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following this page. Among the various accomplishments, the most important have been:

1. The development of the prismatic finite element code for doubly cu_,ed platforms and
its validation with many different antenna configurations

2. The design and fabrication of a new slot spiral antennas suitable for automobile cellular,
GPS and PCS communications

3. The investigation and development of various mesh truncation schemes, including the
perfectly matched absorber and various fast integral equation methods.

4. The introduction of a frequency domain extrapolation technique (AWE) for predicting

broadband responses using only a few samples of the response.

This report contains several individual reports most of which have been submitted for publication

to refereed journals. For a report on the frequency extrapolation technique, the reader is referred to
the UM Radiation Laboratory report
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LIST OF DOCUMENTS IN THIS REPORT

A Planar Slot Spiral for Conformal Vehicle Applications

M. Nurnberger, f. Volakis, D. 1". Fralick and F.B. Beck

This document provides a briefdescriptionof the design,fabricationand measurement of the

fullscale slotspiralantenna and infinitebalun feed for thisantenna. The antenna covers the

CeLlularand GPS bands and isintended for atttomobiledeployment. The measurements at the

NASA Langley facilitydemonstratetheCP performanceaswellas improvements obtainedwith the

applicationof a resistivecoatingforterminatingthearms.

Triangular Prisms for Edge-Based Vector Finite Element Analysis of Conformal
Antennas

T, Ozdemir and J. Volakis

This paper describes the theory of the antenna analysis code FEMA-PRISM. Several validations

aregiven to demonstratethecode'ssuitabilityfordoubly curved antennas.This isthe firstcode for

antenna analysison doubly curved platformsand was jointlysupportedby theRome Laboratory.

Comparison of Three FMM Techniques for Solving Hybrid FE-BI Systems

$. Bindiganavale and J. L. Volakis

The paper provides a critical look at the fast multipole methods using speed and accuracy for

benchmarking purposes. This work is towards our efforts to improve the accuracy of the finite

element mesh truncation schemes while maintaining memory and CPU speed at tolerable levels.

Artificial Absorbers for Truncating Finite Element Meshes
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J Volakis, 7". Senior, S. Legault, T Ozdemir and M. Casciato

This document gives an overview of the PML absorber, its capabilities and application to

various antenna and scattering problems, including the NASA almond and antennas on conical

platforms

Design of Planar Absorbing Layers for Domain Truncation in FEM Applications

S. Legault, T. Senior and J. Volakis

Design guidelines are given for the PML absorber. Curves and formula are derived which can

be used to select the PML parameters to yield a desired performance.

Application and Design Guidelines of the PML Absorber for Finite Element

Simulations of Microwave Packages

J. Gong, S. Legault, Y. Botros and J. Volakis

Demonstrates the validity of the PML design curves derived/presented in the previous document

for applications to microwave circuits. The latter application can be carried under a controlled

environment and is therefore better suited for validating the PML design curves

Hybrid Finite Element Methods for Eiectromagnetics: Applications to Antennas

and Scattering

J. Volakis, J. Gong and T. Ozdernir
A lengthy up-to-date review of the hybrid finite element methods for scattering and

radiation. This document is a concise look at Michigan's contributions, including mesh truncation
schemes, feed modeling and parallelization. Many applications are included ranging from antenna
radiation to radome performance evaluations and scattering. An introduction to the AWE frequency
extrapolation technique is also included for modeling microwave circuits using the finite element
method. This document was submitted for inclusion to a book prepared by ICASE.
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A PLANAR SLOT SPIRAL FOR

CONFORMAL VEHICLE APPLICATIONS

M.W. Nurnberger*, J.L. Volakis', D.T. Fralick _, EB. Beck *

" Radiation Laboratory

Dept. of Elect. Engin. & Comp. Sci.

University of Michigan, Ann Arbor, MI 48109-2122

NASA-Langley Research Center

Hampton, VA 23681

ABSTRACT

A slot spiral antenna and its associated feed are presented for conformal mounting on a variety of

land, air, and sea vehicles. The inherent broadband behavior and good pattern coverage of the spiral

antenna is exploited for the integration of multiple frequencies, and thus multiple transmitting and

receiving apertures, into one compact, planar antenna. The feasibility of the broadband slot spiral

antenna relies on the use of an equally broadband, balanced, planar, and non-intrusive feed struc-

ture. The design of the slot spiral, its feeding structure, and the reflecting cavity are discussed with

emphasis on the experimental validation and construction of the antenna.

Keywords: Spiral Antennas, Planar, Conformal, Automotive, Antenna Measurements

1.0 INTRODUCTION

Spiral antennas are particularly known for their ability to produce very wide-band, almost perfect

circularly-polarized radiation over their full coverage region. Because of this polarization diveristy

and broad spatial and frequency coverage, many applications exist, ranging from military surveilance,

ECM, and ECCM to numerous commercial and private uses, including the consolidation of multiple

low gain communications antennas on moving vehicles.

For the typical wire spiral antenna, the performance advantages mentioned above come at the

price of size and complexity. While the radiating elements of a wire spiral may be planar, the feed

network and balun structures generally are not, and combine to add weight, depth, and significant
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compelexity to the system. Furthermore. because the spiral antenna radiates bi-directionall\, an ab-

sorbing cavity i_, generally used to eliminate the radiation in one direction, adding even morc dcpth

to the antenna. "While some designs exist [1] that integrate the feed and balun into the ca\it\ anti

reduce the complexity' somewhat, the absorbing cavity is still at least a quarter-,_vavelength dccp at

the lowest frequency' of operation, adding significant thickness to the antenna [2].

A slot spiral is not burdened with most of these difficulties. As was demonstrated previously [3].

the balun and feed structure may be integrated into the planar radiating structure. This greatly sim-

plifies the construction and increases the accuracy of the antenna by allowing standard printed circuit

techniques to be used throughout the entire facrications process. Also. while the slot spiral also radi-

ates bi-directionally, a deep, absorbing cavity is not necessary for ant-directional radiation. In fact.

for conformal mounting, a very shallow reflecting cavity is sufficient, and also serves to increase the

gain somewhat.

2.0 SPIRAL ANTENNA OPERATION

The operation of a spiral antenna may most easily be understood by considering a two-wire transmis-

sion line that has been wrapped around itself to form a spiral. Clearly, prior to its deformation, the

two-wire line did not radiate, as the currents in the adjacent wire were out of phase, each cancelling

the other's radiation in the far field. Following the rearrangement, at the center of the spiral, the

currents on the two adjacent wires are still 1800 out of phase. However, as the currents travel down

the two wires, because they have traveled different distances, they reach a region where, instead of

being out of phase with their neighbors, they are in phase. This annular region is called the active

or radiating region, because here, instead of cancelling the effects of their neighbors, each current

reinforces the others, creating appreciable radiation in the far field. It is interesting to note that, for

each current element in this active region, there is another current element that is in both space and

phase quadrature. Thus, the radiation from all the current elements in the active region combines in

the far field to produce circularly polarized radiation.

In order to be considered frequency independent, an antenna must obey both the "angle princi-

ple" and the "truncation principle," as defined by Rumsey [4]. Unfortunately, from its geometry, and

as can be concluded by studying Figure 3, the Archimedean spiral antenna follows neither. Figure

3 shows the radiation pattern of a spiral antenna, operated at a frequency inside its "frequency inde-

pendent" frequency range, measured with a spinning linear source. Specifically, the high axial ratio

indicates that there is a significant amount of opposite sense circularly polarized energy combining

with the desired sense circularly polarized radiation. This behavior, which is present over the entire

operational frequency range, has been determined to be a result of the truncation of the spiral arms

[2,5], and indicates that the currents are not dying out before reaching the end of the antenna. Rather,

they are traveling to the end of the antenna, and reflecting back along the spiral arms into the active

region, from which they re-radiate energy with the opposite sense circular polarization. Thus, a large

portion of the effort in designing an Archimedean spiral antenna lies in minimizing this reflection.

In essence, the structure must be made "frequency independent."

Another important aspect of spiral antenna design is the necessity of a "frequency independent,"

balanced feed. Several different techniques have been developed [ 1,2], most notably Dyson's "infi-

nite balun" [6], a form of which is used in the antenna under development. Besides providing a bal-
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anced feed from the unbalanced coaxial line, a properly' designed balun prevents the pattern .,,quint

so often observed in early spiral antenna designs.

Most splral antenna designs also include a backing cavity to force uni-dircctional operation, h

has been determined that, for wire spirals, an absorbing cavity offers the best trade-off in terms of

frequency bandwidth and physical size [2,5]. For slot spirals, however, a reflecting cavit\ can hc

used to great effect, as the available bandwidth is much larger than that obtained when coupled \vith

a wire spiral.

From the above description it seems reasonable, and in the following discussion it will prove

invaluable, to think of the spiral antenna in terms of three different regions of operation -- the trans-

mission line region, where very little radiation takes place, the active region, where the predominate

amount of energy is radiated, and the termination region, where the unradiated energy is absorbed.

This division of the antenna into smaller, almost independent pieces allows certain parameters and

effects to be separated out and better understood by themselves before trying to understand the op-

eration of the antenna as a whole.

The above discussion has, for clarity's sake, implicitly assumed a wire spiral, and its associated

electric currents. It may be extended to include the slot spiral by applying the theory of duality, in

which the two-wire line is replaced with a slot line, and the electric currents with magnetic currents.

3.0 DESIGN INFORMATION

The design procedure for the slot spiral antenna assembly is somewhat long and involved, and re-

quires the careful choice of many inter-related design parameters. In this section we summarize the

concerns in the design of the slot spiral, and discuss the more important design parameters briefly.

Some guidelines are also given to assist the designer in developing a useful antenna.

The design parameters are:

• spiral growth rate, a

• number of turns, N

• microstrip line characteristic impedance(s), ZM.

• slot line characteristic impedance(s), Zs.

• substrate characteristics: e,,, tan _5,metalization technique ....

• thickness of the substrate, t

• length and impedance of the tuning stub, ls_,.,_,& Zst,_,

• cavity depth, h

• cavity wall material

• slot line termination material and technique
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• specific geometr3 of the m_crostrip-slot line transmon

As with most antennas, the design procedure of the .,,lot spiral _s an Iterative one. However. be-

cause the individual parameters are highly dependent on each other, the design procedure is particu-

larly involved. It is perhaps easiest initially to choose the growth rate, and then to carefullx inspecl

the initial design for inconsistencies. For the following discussion, please refer to Figure.,, 1.2, and

4-6 for clarification.

In the 500 MHz to 4 GHz region, the authors have found a growth rate of 65.4 mils/rad to be a

good initial choice. To provide a good match at the connector, the initial characteristic impedance

of the microstrip line is chosen to be 50.Q. The characteristic impedance of the microstrip inside the

spiral will be decided later, based on the inter-slot spacing and construction feasibility. At the center

of the antenna, the actual feed is contrived through the use of a microstrip to slot line transition.

Here, the microstrip line views the slotline as a pair of shunt branches. For the transition to operate

most effectively, the characteristic impedance of the microstrip line is chosen to be half that of the

slot line, yielding a perfect match at the feed. Based on the dielectric constant and thickness of the

substrate, and on fabrication concerns, a certain range of slot line impedances will be available. For

a dielectric constant of 4.5 and a thickness of 15 mils, the authors have found that a 100f_ slot line,

which has a width of approximately 20 mils, is convenient. This yields a microstrip characteristic

impedance of 50fL and a microstrip groundplane width of approximately 185 mils.

To minimize coupling between the mictrostrip feed line and the slotline, it is best to maximize

the ratio of microstrip line to ground plane width. Many design issues can be traded off in this case

the most important are the growth rate, the substrate thickness and dielectric constant, and the

slotline and microstrip characteristic impedances. In this iteration just the microstrip line width will

be modified w the others may be adjusted in later iterations. To maximize the width ratio mentioned

above, the impedance of the microstrip line is increased until fabrication difficulties determine the

minimum width. For safety, the authors don't venture below a 5 mil feature size. Klopfenstein ta-

pers [7] are used in both cases to ensure that these impedance changes do not hinder the broadband

behavior of the antenna and feed.

To terminate the microstrip line following the transition, for expediency the authors currently use

a Ag/4 open-circuit stub of significantly lower impedance than the microstrip line. More wide-band

techniques are currently being investigated. The termination of the slot line, as discussed above, is

critical for making the antenna behave in a frequency independent manner, and is the subject of on-

going investigation. Initially, tapered applications of foam and ferrite-loaded rubber absorbers were

used, but were found to be of little help. Currently under investigation is the use of "radar-absorbing

paint," applied in a tapered fashion over the slots.

The design of the reflecting cavity is driven by the upper and lower frequency extents of the

antenna. The reflector must be close enough to the antenna so that, at the highest frequency, it is still

less than Ao/4 away, to avoid complete cancellation on boresight. However, it cannot be so close

that it shorts the fields in the transmission line region. In practice, these fields are very tightly bound

to the slots, but it is still quite possible to significantly disturb them. To help avoid resonant cavity

effects, the walls of the reflecting cavity are also made of absorber.

As was mentioned earlier, the quality of the slot line termination is very important for low axial

ratio designs and consistent pattern quality over frequency. The growth rate is also important, and

should be kept as small as possible, again to minimize the axial ratio. The microstrip to slot line

transition is important as well, particularly in terms of the overall bandwidth and impedance match of
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the antenna. Finally, choice of the substrate is critical to minimize losses, especially in the microstrip

line, and to reduce unv_anted coupling effects.

4.0 MEASUREMENTS

A slot spiral antenna, with parameters as discussed above, and operating frequency' range from 750

MHz to 1.8 GHz, was contructed on 15 mil Rogers TMM-4, with 1 oz. electrodeposited copper on

each side. Figures 4-6 show the front, back, and disassembed views of the antenna itself. Calibrated

pattern measurements were conducted at the NASA LaRC low frequency antenna chamber, using a

spinning linear source antenna. The antenna was mounted in a 4.5' square ground plane attached to

the roll-over-azimuth-over-elevation positioner in the chamber, as depicted in Figure 7. The edges

of the ground plane were also treated with tapered R-card to reduce diffraction effects.

Orthogonal plane cuts were taken through and at 90 ° to the connector in an effort to determine

and minimize radiation effects from the connector. Figure 8 shows a typical pattern cut, orthogonal

to the plane of the connector, with a plot of the axial ratio as well. This pattern was taken with the

slot line termination constructed from ferrite-loaded rubber and absorbing foam. Figure 9 shows the

radiation pattern for the same antenna, but with a tapered application of "radar-absorbing paint" as

the termination. The decrease in axial ratio is significant, and demonstrates the necessity of a good

termination. Patterns similar to these were obtained over the entire operating range of the antenna,
each showing a similar reduction in axial ratio.

Figures 3, 8, and 9 also show an unfortunate lack of gain -- the peak gain is approximately -2.5

dBic. Preliminary calculations indicate that most of this loss is attributable to losses in the microstrip

line, especially since the copper on the substrate was electrodeposited. Techniques to minimize these

losses are currently being studied.

5.0 CONCLUSIONS

The design of the slot spiral antenna was discussed, and experimental results were obtained to exam-

ine its performance. A useful broadband slot termination is now being investigated with promising

results, implying that the Archimedean slot spiral can be made truly frequency independent. Cur-

rent and future work includes further numerical and experimental studies of the slot line termination,

synthesis of a more broadband microstrip to slot line transition, and pattern performance evaluation

when mounted on automobiles or other moving vehicles.
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Figure 3: Spinning linear plot of spiral antenna, showing effects of poor arm termination.

) )

Figure 4: Top view of Slot Spiral Antenna,

showing infinite balun microstrip
feed.

Figure 5: Bottom view of Slot Spiral An-

tenna, showing absorber walls and

reflecting cavity bottom.

Figure 6: Disassembled pieces of the Slot

Spiral Antenna.

Figure 7: Slot Spiral Antenna mounted on

ground plane, in anechoic chamber•
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Figure 8: Spinning linear plot of spiral antenna, with ferrite-loaded rubber and absorbing foam arm
termination.
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Triangular

element

prisms for edge-based vector finite

analysis of conformal ant, ennas 1

T. Ozdemir and J. L. Volakis

Radiation Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, Michigan 48109-2122

August 14, 1996

Abstract

This paper deals with the derivation of the edge-based shape functions for the

distorted triangular prism and their applications for the analysis of doubly curved

conformal antennas in the context of the finite element method (FEM). Although

the tetrahedron is often the element of choice for volume tessellation, mesh gen-

eration using tetrahedra is cumbersome and CPU intensive. On the other hand,

the distorted triangular prism allows for meshes which are unstructured in two

dimensions and structured in the third dimension. This leads to substantial sim-

plifications in the meshing algorithm and many conformal printed antenna and

microwave circuit geometries can be easily tessellated using such a mesh. The

new edge-based shape functions are first validated by computing the eigenvalues

of three different cavities (rectangular, cylindrical and pie-shell). We then proceed

with their application to computing the input impedance of conformal patch anten-

nas on planar, spherical, conical and other doubly curved (ogival) platforms, where

the FEM mesh is terminated using an artifical absorber applied conformal to the

platform. Use of artificial absorbers for mesh termination avoids introduction of

Green's functions and, in contrast to absorbing boundary conditions, a knowledge

of the principal radii of curvature of the closure's boundary is not required.

1This work was supported in part by the U.S. Air Force Rome Laboratory and the
NASA Langley Research Center.
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1 Introduction

The brick and tetrahedron are popular elements for a finite element analy-

sis of electromagnetic problems. The first is indeed attractive because of its

simplicity in constructing volume meshes whereas the tetrahedron is a highly

adaptable, fail-safe element. It is often the element of choice for three dimen-

sional (3D) meshing but requires sophisticated and CPL'-intensive meshing

packages. The distorted prism (see Figure l) is another volume element

which provides a compromise between the adaptability of the tetrahedron

and the simplicity of the brick. Basically, the distorted prism allows for

unstructured meshing (free-meshing) on a surface and structured meshing in

the third dimension. An approach for growing prismatic meshes is illustrated

in Figure 2 and most volumetric regions in antenna and microwave circuit

analysis can be readily tessellated using such a mesh. As seen, once the sur-

face grid over the platform is constructed, the volume mesh is grown along

the surface normal by repeating the same grid at multiple distances from

the platform. This avoids use of CPU-intensive volumetric meshing packages

and, in many cases, including some popular patch shapes, the surface grid

can be easily generated without resorting to a surface gridding package. Ex-

amples include printed rectangular and circular patch antennas, and circuits

comprised of rectangular shapes. Moreover, because of their triangular cross-

section, the prisms overcome modeling difficulties associated with bricks at

corners formed by planes or edges intersecting at small angles.

A special case of the distorted prism is the right prism which is character-

ized by the right angles formed between the vertical arms and the triangular

faces [1]. The top and bottom faces of the right prism are necessarily parallel

and equal, restricting them to a limited range of applications, namely, ge-

ometries with planar surfaces. In contrast, the distorted triangular prism is

almost as adaptable as the tetrahedron with the exception of cone-tips which

are not likely to occur in printed antenna and microwave circuit configura-

tions.

In this paper, we introduce edge-based shape functions [2]-[4] for the most

general distorted prism shown in Figure 1. These prisms have non-parallel

triangular faces and each of their three vertical edges can be arbitrarily ori-

ented. In the following, we first present the derivation and validation of

the edge-based shape functions and then proceed with their application for a

characterization of printed antennas on doubly curved surfaces. In this appli-
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Figure 1: The distorted triangular prism shown with the direstions of the

edge vectors

cation, the finite element mesh is terminated conformal to the platform's sur-

face using an artificial absorber rather than an absorbing boundary condition

(ABC) [5]. The employed conformal mesh termination is easily implemented

by using prisms, and in contrast to the ABCs, the artificial absorber does not

require a priori knowledge of the closure's radii of curvature or the wave's

propagation characteristics. The utility and versatility of the proposed fi-

nite element method (FEM) formulation is demonstrated by considering the

analysis of several printed antennas on different platforms. Specifically, we

include input impedance computations for rectangular and circular patches

on planar, spherical and conical surfaces. The radiation from a patch on an

ogive is also considered.

2 Vector edge-based basis functions

Consider the distorted prism shown in Figure 3. The prism's top and bot-

tom triangular faces are not necessarily parallel to each other and the three

vertical arms are not perpendicular to the triangular faces. The first step

toward specifying a set of shape functions for the prism is the identification

of a unique cross-section containing the observation point (x, y, z) (see Fig-

ure 3). This is done by introducing a parametric representation for the nodes

(xi, y,, z,) of this cross-section as illustrated in Figure 4. These parametric
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Figure 4: (a) Nodal coordinates, (b) triangular cross-section with the local

coordinates _ and q.

representations are given in the Appendix. They involve the parameter s

such that (x,, yi, zi) reduce to the nodes of the bottom triangle when s = 0

and those of the top triangle when s = 1. Given a point (x, 9, z) interior to

the prism, a unique value for s can be computed as discussed in Appendix A.

Having specified the cross-section through the point (x,9, z), we next

proceed with the derivation of the basis functions. We chose to represent

the field variation across the triangular cross-section using the Whitney-1

form [6]. A simple linear variation will be assumed along the length of the

prism. Specifically, the vector basis functions for the top triangle edges can

be expressed as

N1 --

N2 =

N3 =

and correspondingly those for

M1 = dl

M2 = d2

M3 = d3

d] ( L2 V L3 - La V L2 ) s

d2 ( La V L1 - LI V L3 ) 2

(t3 ( L1VL2 - L2VL1 ) 2

the bottom triangle edges will be

( L2VL3 - LaVL2 )(1 - s)

(LaVL,- L,VLa)(1 - s)

( L1VL_ - L2VL_ ) (1 - s).

(1)

(2)

The subscripts in these expressions identify the edge numbers as shown in

Figure 1 and the distance parameters di are equal to the side lengths of the
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Figure 5: (a) Vector map of N2 or M2, (b) Vector map of K1, (c) Variation

of £, as a function of x, y, and z.

triangular cross-section containing the observation point (see Figure 4(b)).

Also,

1

L_(_,rl) = 1 - _--_1(

COS _3 sin a3

L2(_,rl)- h2 ( h2 77 (3)

L3(_, r/) -- cos a2 sin a2
• h3 h---T

are the usual two dimensional scalar node-based basis functions [7] for the

same triangle with ai denoting the interior vertex angles and hi being the

node heights from the opposite side. The variables ( and rI represent the

local coordinates and are illustrated in Figure 4(b). As required with all

edge-based shape functions, Ni. ei and Mi • ei have unity amplitude on the

ith edge whereas Ni • _j = Mi. ei = 0 for i _ j. Their vector character is

depicted in Figure 5(a) and they simply "curl" around the node opposite to

the edge on which their tangential components become unity.

It remains to define the shape functions for the three vertical edges and we
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choseto expresstheseby the representations(linear over tile cross-section_

K,(C,;) = g'I,_.r/)Ll(,'.,7/

K_({.r/) = f'({.r/)L=(_.r/)

Ka((,q) = f'({,r/)L3((,r]).

(4)

As before, L, are the node-based shape functions defined in (3) and a pictorial

description of K1 is found in Figure 5(b). Of particular importance in (4) is

the unit vector i,((,q). It is a linear weighting of the unit vectors 51, 52 and

i'3 associated with the vertical arms (see Figure 5(c)), and is given by

3

IE,=, Li(_, ,7) vi

= II . . (5)E,=l L,({, r/) v, I[

This particular choice of 4, is oriented parallel to the side faces of the prism

when evaluated on those surfaces and minimizes tangential field discontinuity
across the side faces. Another choice is

9((,r/) = Vs (6)

which is always oriented normal to the triangular cross-sections of the prism

and ensures tangential field continuity across the top and bottom triangular

faces. Both choices are equally useful. However, (5) is more computationally

efficient and has been used in generating the results presented in sections 3
and 4.

The shape functions derived above for the distorted prism reduce to the

right prism shape functions presented by Ndddlec [8]. However, it should be

pointed out that the gbove shape functions do not guarantee tangential field

continuity across the faces of neighboring prisms. The possible discontinuity

is primarily an issue for highly distorted elements and is caused by the fact

that the horizontal vector basis functions (N and M) may have small non-

vanishing tangential conponents across the vertical faces of the prism (and

vice versa for the vertical basis functions). The expressions given in Ap-

pendix B neglect contributions due to the tangential discontinuities across

the inter-element boundaries. These contributions were ignored because the

discontinuity depends on the distortion of the prism and in practice the ele-

ments are marginally distorted. For general applications, our basis functions

can be safely employed (within the accuracy of the finite element method) as
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long as the deflection of the vertical arms is less than 5 _'. In the results to be

presented later, the deflection was always kept less than 3:'. Furthermore. in

the case of patch antennas, the discontinuity is nearly nonexistant because

the horizontal prism faces (top and bottom) coincide with metallic surfaces

and therefore an) possible discontinuity on the vertical fields under the patch

(which are most dominant) is eliminated.

Shape functions ensuring tangential continuity across the distorted prism

faces can be derived but will be more complicated in form and CPU intensive

to implement. On the contrary, the ones presented here lead to a more useful

code for design purposes.

3 Eigenvalue Computation

In this section, we examine the validity of the presented edge-based functions.

Specifically, we consider the eigenvalues of three different cavities using the

distorted prism as the tessellation element. We begin by first deriving the

matrix elements following Galerkin's testing. The weighted residuals of the

vector wave equation are

/ f fvN,.(V ×V x E-k2oE)dV =O, i= 1,2,3, (7)

in which N;, M, and K_ comprise the nine edge-based vector basis functions

defined in the previous section and E is the electric field vector.

The matrix equations are generated by introducing the representation

3

E = Y_ [E/lvNi(r)+ EiMM_(r)+ E_KKi(r) ] (10)
i---1

where EiN, ElM and EiK are the expansion coefficients, and correspond to

the average amplitudes of the tangential field vector along the prism's edges.

Substituting (10) into (7)-(9), and invoking the divergence theorem yields

the element equations

3 3

Y_ EjN[NNCij - k2oNYDij] + Y_ E3M[NMCij - k2oNMD,j] +
j=l j=l
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3

__, E3_,[.\KC,,. . - k:.VKD,._ _ = 0
3=1

3 3

__. E;.x-[M.VC,; - _3oMND,3] + _ E3M[MMC,; - k_MMD,3 ] +
j=l 3---1

3

Z EJ_,[MKC,3 - t,']AIKD,,] = 0
3----1

3 3

E3x[K.VC., - k_I,'ND,3] + y_ E,M[I,'MC., - I,'2oI,'MD.,] +
J =I 3-----I

3

__, Ejt,[h'IgC,, - k_oI,il, iD,,] = O, i= 1,2,3.
3=1

III

12)

where the quantities NNCij, NNDi3, etc. are integrals (over the volume

of the prism) involving vector basis functions. Explicit expressions for the

integrals are given in Appendix B.

Upon assembly of (11)-(13) and boundary condition enforcement, we ob-

tain the generalized eigenvalue system

[Al{x}=k2o[B]{x} (14)

in which I = ko2 represent the eigenvalues of the problem. The matrices [A]

and [B] are real, symmetric and sparse ([B] is also positive definite).
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Figure 6: (a) Rectangular cavity discretized using right triangular prisms.

(b) eigenvalues for the air-filled cavity and comparison with the brick and

tetrahedron results.

Example 1: Rectangular Cavity

The first example is the rectangular cavity shown in Figure 6(a). Results

based on brick, tetrahedron [9] and prism discretizations are given in Fig-

ure 6(b), where they are compared to the exact values. We observe that,

overall, the data based on the prism are better than those based on the brick

and, at least, as good as those associated with the tetrahedron. Figure 6(a)

displays the actual mesh used for both the brick and prism discretizations.

The number of degrees of freedom for the prism, brick and tetrahedron com-

putations were 382, 270 and 260, respectively.

Example 2: Dielectric ring resonator

Figure 7a shows a dielectric ring placed symmetrically inside a cylindrical

cavity and of interest is the computation of the resonance frequency in the

presence of the dielectric ring. The resonance frequency was measured [10]

using a loop antenna connected to a directional coupler as shown and the

cavity was excited by the same loop antenna. Since maximum coupling to

the cavity occurs at resonance, minimum power is returned to the detector

at this frequency. For computation, the cavity was discretized as shown in

Figure 7b resulting in 1051 degrees of freedom. The computed frequency was

1257 MHz (based on the smallest eigenvalue) and this is within 2% of the

measured value (1282 MHz).
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Cavit3' dimensions:
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Height = 13.84cm

Diameter = 15.24 cm

- . _ o

(b)

Results:

Measured = 1282 MHz

Computed = 1257 MHz

( Error = 2 %)

Figure.7: Dielectric ring resonator, (a) geometry, (b) mesh.

Example 3: Pie-shell Cavity

The third example is a pie-shell sector as shown in Figure 8(a) modeled

using distorted prisms. It is obtained by bending the rectangular cavity

considered earlier. The computed and exact eigenvalues for the first five

dominant modes are given in Figure 8(b), and these testify to the accuracy

of the distorted prisms in modeling curved geometries. The number of degrees

of freedom used for this computation was 382.

4 Application to antennas

4.1 Finite element-artificial absorber method

Prisms facilitate the modeling of conformal antennas since the presence of

curvature does not complicate the mesh generation. As is the case with all

PDE methods, the mesh must be terminated using a boundary integral, some

approximate boundary condition or an absorber. When a Green's function is

available, the mesh termination can be achieved using the boundary integral

method right on the antenna surface yielding exceptionally accurate results.

However, there are two problems with the boundary integral mesh trunca-

35



(Actual mesh)

0.Scm

4

- - 0.75cm

.... . y

- -_ll)

•._, ] cm

(70 ° )

Mode k. cm _ % Error
(Exact) (Computed)

TM Ito 4.693 1.55

TM 21o 6.009 1.28

TE tJl 6.640 2.71

TIE 211 7.513 -0.27

....WE ol) 7.579 2.73

(a) (b)
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Figure 9: Finite element-artificial absorber technique: (a) Antenna geometry,

(b) Mesh termination using a metal-backed lossy dielectric layer.
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tion techniques. First, the Green's function is only available for canonical

geometries, i.e.. planar [11], cylindrical [12] and spherical [13]. Second, the

presence of material overlays can prohibitively complicate the derivation and

evaluation of the Green's function making it very diffqcult to implement the

boundary integral termination method. Thus, for modeling non-canonical

geometries with possible material overlays, it is preferable to avoid use of

the Green's function. Instead, an artificial absorber will be used for truncat-

ing the mesh as illustrated in Figure 9. The resulting implementation will

be referred to as the finite element-artificial absorber (FE-AA) method and

has several attractive computational features. Among them are fast conver-

gence [5] and a capability to provide accurate input impedance computations.

Accurate radiation pattern data can also be obtained when the rest of the

platform has little or no effect. In its simplest form, this is done by ignor-

ing the extent of the platform and integrating the aperture fields using the

free-space Green's function.

We next discuss the artificial absorber and then proceed with the appli-

cation of the FE-AA method for the analysis of a variety of patch antennas

on different platforms, some of which are presented here for the first time.

4.2 Design of the artificial absorber

The absorber consists of a lossy dielectric layer backed by a metal. Metal

backing enables us to terminate the mesh while the lossy dielectric lining

traps the incoming wave and absorbs it, thereby forming a trasparent bound-

ary. The absorber material parameters are chosen to completely eliminate

wave reflections at normal incidence. Away from normal, the absorber reflec-

tivity increases monotonically but can be minimized by proper selection of

the absorber thickness and material parameters. Clearly, a thicker absorber

has a better performance but carries additional computational burden. In

addition, higher attenuation is achieved by making the layer more lossy.

However, in this case more samples are required along the thickness of the

layer to accurately model the field's amplitude decay. For a given thickness

and sampling, an optimization can however be carried out. Such a study was

performed in [5] and it showed that a minimization of the reflectivity for a

3-layer, 0.15to (free-space) thick metal-backed absorber yields the constitu-

tive parameters of er =/_r = 1 -j2.7 (see Figure 9). Below, we make use

of this absorbing layer for mesh truncation. A layer based on the recently
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Figure 10: Cavity-backed circular patch on planar platform, (a) Configu-

ration, (b) Input impedance vs frequency and comparison with the finite

element- boundary integral method.

introduced anisotropic perfectly matched absorber [14] could have been used

as well, but this was not found necessary at this stage.

4.3 Input impedance computations

Cavity-backed circular patch on planar platform

We first consider a patch on a planar platform since validation data can be

generated using the more rigorous finite element-boundary integral method.

Figure lOa shows a circular patch backed by a circular cavity recessed in a

planar ground plane. A probe feed has been placed between the patch and

the ground plane and Figure lOb shows the variation of the input impedance

as a function of the excitation frequency. As seen, the computed impedance

is in excellent agreement with the reference data obtained by terminating

the finite element mesh at the cavity aperture using the half-space Green's

function [11].
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For this example, the computational domain wasdiscretizedusing 7,440
prisms resulting in 12,523 degreesof freedom. One frequencyrun took 3..5
minutes on an HP 715/64 workstation.

Microstrip c_rcular patch on sphere

Figure lla shows a microstrip circular patch placed on a sphere. This is

an example which clearly shows the advantage of the finite element-artificial

absorber technique. Once the antenna aperture is triangulated, the volume

mesh is grown along surface normals (using prisms) and terminated with

the artificial absorber. Figure llb shows the comparison with the moment

method [13] and the effect of sphere radius on the resonance behavior. Res-

onance frequencies predicted by this method and the moment method are

within 2% of each other. Although negligible, the difference must be evalu:

ated in view of the fact that the reference data is based on the approximation

that only the dominant TMxl mode exists under the patch. Such assump-

tions are absent in the finite element analysis. Clearly, the value of the input

resistance is a strong function of the employed feed model and therefore, it

is not surprising to see differences in the levels of the resistance as computed

by the finite element method and the single mode moment method solution.

Figure llb also shows the resonance behavior for different sphere radii, and

it is observed that the resonance frequency decreases with increasing radius.

This trend might be explained by noting that the shortest distance between

the radiating edges of the patch is greater for a larger sphere radius. The

patch radius (measured on the spherical surface) has been kept constant for
this calculation.

Figures 12c shows the input resistance variation with the excitation fre-

quency for different substrate/superstrate material constants and thicknesses.

Similarly to the planar patch, we observe the downward shift in the resonance

frequency caused by the increasing relative permittivity of the substrate. No-

tice also that the shift is only half as much when the superstrate is present

even though the increase in the refractive index of the superstrate layer is

1.6 times higher than that of the substrate. This is because the field is much

stronger under the patch than above it. As expected, Figure 1 lc shows that

the loss in the substrate material has no effect on the resonance frequency

but it lowers the overall level of the input impedance. The typical bandwidth

increase with increasing substrate thickness is also observed.
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Figure 11: Microstrip spherical-circular patch, (a) Geometry, (b) Comparison

with reference data and effect of sphere radius on the resonance behavior,

(c) resonance behavior as a function of substrate/superstrate thickness and

material constants, (d) definition of the parameters.
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Figure 12: Microstrip sectoral patch on cone: (a) Configuration, (b) change

in the resonance behavior as a function of the cone angle 0.

For this example, the computation region has been discretized using 6,048

prisms resulting in 9,997 degrees of freedom. One frequency run took 4.5

minutes on an HP 715/64 workstation.

Microstrip sectoral patch on cone

This is an example which illustrates the effectivenenss of the new tech-

nique to model antennas on doubly curved platforms with varying radii of

curvature. To our knowledge, this is the first analysis of patches on such a

platform. Figure 12a.displays a sectoral microstrip patch printed on a'coni-

cal ground plane and Figure 12b shows the antenna resonance behavior as a

function of the cone angle 0. We clearly observe that the resonance frequency

drops with the cone angle for the same patch dimensions. It should be also

remarked that the computed resonance frequency is within 3.2 percent of

that predicted by the approximate cavity model, and this is reasonable.

In generating the results given in Figure 12, the computational domain

was discretized using 2,358 prisms resulting in 3,790 degrees of freedom.

One frequency run took 5.5 minutes on an HP 715/64 workstation.
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Figure 13: Cavity-backed rectangular patch on ogive: (a) Setup, (b) antenna

dimensions, (c) Comparison with the measurement.

4.4 Radiation pattern computations

Cavity-backed rectangular patch on ogive

As another example, we present the FE-AA method's application to a

more general doubly curved platform. Figure 13a shows the set-up, where a

rectangular patch is placed on the aperture of a rectangular cavity recessed

in the ogive's surface. Also, in Figure 13b we show the dimensions of the

antenna. The radiated field is computed by integrating the tangential aper-

ture fields using the free-space Green's function. Thus, the shown pattern

accounts only for the antenna (and the curvature of the platform), but does

not include interactions with the ogive's tips. Figure 13c shows the corn-
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puted P-polarized radiation as compared to tile measurement [15]. Clearly,

the agreement is very good for this polarization. However. predicting the o-

polarized radiation (not shown) requires modeling of the entire ogive as this

particular polarization has a vertical surface field component which is known

to cause diffraction from the ogive's tips. A way to account for such sec-

ondary diffractions is to interface the FE-AA method with a high frequency

technique and an encouraging study in this direction has been carried out in

[16].

5 Conclusions

A new finite element technique was introduced for the analysis of printed

antennas recessed in platforms of non-canonicai shape. The distorted prism

was introduced as the volume discretization element, and corresponding edge-

based shape functions were derived and tested for eigenvalue computations.

A major part of the paper though was devoted to characterizations of

printed antennas using the new technique. Use of prismatic elements was

found very attractive for this application and was essential in simplifying the

modeling of antennas on doubly curved platforms. An artificial absorber was

used to terminate the mesh conformal to the platform thereby minimizing the

size of the problem while preserving the sparsity of the finite element matrix.

Use of the absorber also avoids difficulties associated with the conformal

application of the classical ABCs. Antennas on spherical, conical and ogival

platforms were considered without using a Green's function and therefore,

the superstrate/substrate metarials can be readily accounted for.

A limitation of the technique is that it models the immediate neighbor-

hood of the antenna, and therefore ignores the details associated with the

rest of the platform and possible substructures around the radiator. How-

ever, the proposed method was shown to be a good approach for predicting

the resonance behavior of antennas, and could evolve as an important tool

for designing conformal antennas on doubly curved platforms.
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Appendix A

Referring to Figure 4a. a way to specify the nodes of the triangular cross-

section through the point (x.y. z) is to use the parametric representation

r, = rib + s(r,t - r,b). i = 1.'2.3. (.41)

where r, are the nodal position vectors of the triangular cross-section (see

Figure 4a) whereas r,t and r,b are associated with the top and bottom tri-

angular faces, respectively, and 0 _< s < 1. Thus, for s = 0 r, specify the

nodes of the bottom triahgle and for s = 1, r, reduce to the nodes of the

top triangle. The cross-section sweeps the entire volume of the prism as s
assumes values between these two limits.

Given an interior point (x, y, z), the task is to specify the cross-section of

the prism that contains the point. In mathematical terms, a solution of s in

terms of x, y, and z is required. On our way to finding this solution, we note

that the normal distance of the point (x,y,z) to the cross-section must be

zero, viz.

(X--'Xl)nx + (y-yl)n_ + (z-zl)nz=O (A2)

where xl, Yx and zl are the coordinates for one of the nodes of the cross-

section (see Figure 4a), and nx, n_ and n. are the components of the cross-

section's unit normal pointing toward the top surface and can be computed

'aS

(r_ - rl) × (r3 - r2)

n(s)= [l(r2_ rx ) × (r3- r2)l[

where ri are as given in (A1). The left hand side of (A2) is a linear function

of s for the right prism, and is nearly linear for a marginally distorted prism

(which is the case in practice). Therefore, a very fast converging solution of

(A2) is obtained by the Newton-Raphson method. In generating the results

presented in sections 3 and 4, an average of three iterations sufficed to achieve

a tolerance of 10 -s x Prism Height).
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Appendix B

For the assembly of the finite element equations, the following quantities

must be computed:

.,.N,,.,= l/iN.
,M,,.,= Ill N.
N,,,..= Ill N.

M,,'D,,= II/ _,

x N,)" (K" x Nt)dI"

x N,)' (V x Mt)dI"

x Ni)-(_7 x Ke)dt"

x Mi)" (K7 x Mt)dV

x Mi)" (V x K_)dV

x Ki)" (V x Kt)dV

NtdV

MtdV

KtdV

MtdV

KtdV

KtdV.

where the integrals are over the volume of the prism and they must be eval-

uated numerically. However, numerical integration over the distorted prism

volume is cumbersome and therefore, the distorted prism is first mapped onto

a right prism as shown in Figure B1. The integration over the new volume is

then carried out by using the five point Gaussian formula. The relationship

between the two integrations is given by
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where (x.y. z) are related to (_. q. q') through the bilinear transformation

z = ( + ((al£ + a2,7 -'- a'l,,) (B1

t B2

_B3

with

2"2t -- Xlt -- .T2b
a I :

.T2b

J'3t _ .Tlt -- J'3b -- CZl'T3b
a 2

Y3b

Y2t -- Ylt
I>1 --

X2b

b2 = Y3t - Ylt - Yzb - blx3b
Y3b

Z2t _ Zlt
Cl --

X2b

Z3t _ CIX3b -- Zlt
C2 ---

Y3b

and (xib, yis) and (x., yit, z,t) are the coordinates of the prism's bottom

and top surface nodes, respectively, as shown in Figure B1. Also, [J] is the

Jacobian of the bilinear transformation defined by (B1)-(B3) and is given by

Special Case: Right Prism

I Ox ; Oz ]

For the right prism, closed form expressions can be derived for the above

integrals. Referring to Figure 4b, we have

E N N C, e
didt cos/3k,_ cos Bj= cos 3k.,

( X:,,', + -- Xk,, - X j,', -
c hkh,_ hjh_

cos f3j,, 2 c2hldl sin[3jk sin/3,.,,,., )
hjh,, X.k,.,, + 3 hihkh_h,,
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o JS

(o. 0. o)

{x,_, O. 1)

I (x _,. y._, O)

,j,t
(X,b, O,O) "

('Distorted prism) (Right prism)

Figure B 1: Mapping distorted prism onto a right prism

ENMCit dide ( cos/3k,_ cos/3j,, cos ¢3k,_
c hkh_ hjhm hkh._

cos 13i,_ 1 c2 ha dl sin_3jk sinJ3mn )
hjh---'-_ X/`,,_ + _ hjhkh_h,_

cos _jt cos/3kt
ENKC, t - hldl d, ( )

6 hjht hkht

EMMCit = ENNCit

-- _;.m +

EMKCit = -ENKCit

EKKCit hidl cos Bit
2 hiht

ENMDit = 1ENNDit
2

COS/_jn

hjhn
X k,. )
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E.VA'D,_ = 0

EMMD,e = E.V.VD,e

EMKD,e = 0

EKKD, e = c\,e

where c is the height of the prism,

_3_,=_" 0 ifr=s
[, or + a, otherwise

_'T3 h,d,2 {w,w, + _[(cota3 -cota_)(rl, w , + rlrw,) + 2(_¢w, + _,w,)] +

_[3(cota3 - cota_)(rl,_, + rl,_, ) + 2rlrrl,(cot_a2 _ cota_coto3 +

cot2_3) + 6(r_,]}, r,s = 1,2,3,

the set {i, j, k} takes on the value { 1,2, 3}, {2, 3, 1} or {3, 1,2}, and the same
is true for the set {l, m, n}, and

w,=l 7,=0
sin a3

w_ =O _2 = ¢_-._-_ rl2--
h2

h_

sin _2
W3 = 0 _3 = cosa_ --

h3 r/3 h3
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Abstract

Three different versions of the Fast Multipole Method (FMM) are employed to

reduce the storage and computational requirement of the boundary integral in the finite

element-boundary integral method. By virtue of its O(N 1"5) or O(N 1'33) operation

count, the application of the FMM, results in substantial speed-up of the boundary

integral portion of the code, independent of the shape of the BI contour. The main

goal of the paper is to provide a comparison of the various FMM approaches on the
basis of CPU time and accuracy. We present such comparisons and draw conclusions

on the basis of computing the scattering from large grooves.
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1 Introduction

The finite element-boundary in)e_ra] (FE-BI) method ha> l)('ex_ quit(, i)Ol)ula)al)d ('xI(')isi,,,'Iv

applied to many applications. Tbc melhod tl] combine> the g(,onwlrical adal)tabilily at.i

material generality of the FEM with the rigorous BI for trur.'alillg )1,(, ,,l('stl. Neverlh(.I,,s.-.

although "'exact" the FE-BI leads to a partly full and l)artly sf)arsc svs)en) and is tiros

computationallv intensive for large boundary integrals. \\'hen tile |)(.)u,ldar\ is r('clangular

or circular, the FFT can be used to reduce the memory and CPI_" requiremenls down to

:'V log3," [1].[2]. However. in general, the boundary integral is not convolutional and in

that case the CPI.' requirements will be of O(.\'_). where .\_ denoles the unknowns on the

boundary. The application of the fast mu]tipole method enables the compulalion of lhe

boundary matrix-vector product with a O(N _s) or 0(.\ "_a:_) operation coum [::)}.[4}.

In this paper, we apply three different versions of the Fast Multipole .Method (F.MM) to

reduce the storage and computational requirements of the boundary integral when the size

of the contour is large. By virtue of its low operation count, the application of the FMM

results in substantial speed-up of the boundary integral portion of the code independent of

the boundary shape,

2 Problem Definition and Formulation

As an application of the proposed technique, we consider the scattering by a cavity-backed

aperture shown in Figure 1. The FE-BI formulation for this problem was already outlined

in [2] and results in the solution of the system

{¢i_} } (1)

The vector and typical form of this system is given in Figure 2. {¢} represents the magnetic

field at the nodes within the groove and on the boundary. Also, {¢1 } represents the magnetic

currents on the boundary. By virtue of the finite element method, the matrices [K] and [B_]

are sparse and thus the corresponding matrix-vector products are implemented using O(N)

operations. However [P1] is a full sub-matrix and thus O(N_) operations are needed to

perform the product [/:'1] {_b_} with Nb denoting the number of nodes on the cavity aperture.

Consequently, in an iterative solution, this matrix-vector product becomes the computational

bottleneck. To reduce the operation count we will herewith employ the FMM procedure for

implementing the products [P_]{_ba }.

Next we examine three versions of the FMM to accelerate the boundary integral matrix-

vector product computation. Specifically, the exact FMM [5],[6], a windowed FMM [7] and

an approximate FMM [81 are examined.

3 FMM Techniques

As stated above, the FMM is a fast method for calculating the matrix-vector product. The

computation of the matrix-vector product is illustrated with the boundary integral for TE
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Figure 1: Geometry of the groove recessed in a ground plane

incidence (H-pol). In this case we deal with the discretization of the integral equation

H_ + H; = H rEM: (2)

with H_ the scattered magnetic field, H_ the incident magnetic field and H( TM the total

field which is employed to enforce tangential continuity, and

(a)

Mz = E_. is the magnetic current and rl indicates the extent of the boundary,, _ and 77 are

the vectors describing the observation and source points.

3.1 Exact FMM

As illustrated in Figure 3, the Nb boundary unknowns are subdivided into groups with each

group assigned Mb unknowns. Thus a total of Lb _ N_. groups are constructed. Next, by
Mb

invoking the addition theorem for cylindrical wave functions, the Hankel function is expanded
as

Q/2

Ho(2) (kolp--77r+ _- _l) _ _ J,,(kol7- -N)H(,,=)(kopu,)ej'_(_'''-<_¢,>) (4)
n=-Q/2

where Cw and Cp,p are the angles _ and 77-_ make with the x-axis respectively and is valid

for pw > 177- N- It should be noted that the source and observation point vectors, 77 and

have their origin at the center of the source and test groups respectively. The semi-empirical
formula

Q/2 = koO + 51n(k0D + 7r) (5)

where D is the diameter of the circle enclosing the groups is used to truncate (4) and in

general, Q/2 = Mb, assures convergence. The Fourier integral form of the Bessel function

1 f2 eJk°'(o'-'P)-Jn(¢-¢°'°+_r/2)d¢&(/_ol77- = . (6)
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Figure 2: Typical form of the FE-BI system matrix arising from the scattering/radiation

problem of a groove in a ground plane.

in conjunction with (4) is used to write (3) as

kot5 )(2 Vt,(¢)T,,(¢) _3ko._d¢ (7)H:(P) = 27r ,,

where the far-field pattern of the source group is given by

Vt,(¢) = Iv, M_(-_)eJk°P'dl' (8)

and the translation operator Tu,(¢) is given by

Q/2

r,.(¢)= F_. HC._l(kopu')_-_"(_-_'''+'/_ (9)
n=-Q/2

with the propagation vector of the plane wave

ko = ko(_: cos ¢ + _)sin ¢) (10)

The integral over ¢ is discretized into Q plane wave directions, thus yielding an expression

for the fields radiated by the source group l' to the receiving group l

koYo. , Q_.
HS('fi) = _ /xO L Ttl,(¢q)Vt,(d)q)e -Jk--_''_ (11)

q=l

54



_0 _ _ _' r_ ' _ 0 = _ _ r/ _ indicate._ the angular spacing belweell l_rotmgation w'clor_, of i_la_w wa\c-

emanating from a group and thus o,_ -- q.5o q = 1... (,) and l,'--_-- /,_l.i ct,. c,.-.- _isit_ c,.

As mentioned earlier, the number of t)lam , wave directiol>, is set equal ItJ twice, tlw llUlIll,ct

of elements in the group (Q = 2.1L,). thus satisfying the .NvquisI sa1111)ling t lleoTet_l wil}l

respect to the integralion over o.

Figure 3: Computation of the boundary integral matrix vector product using exact FMM

In the exact FMM, the matrix vector-product is computed in the following sequence

1. The pattern of the source group is computed. Mathematically, this corresponds to

1_},(¢q) = £ M_(7)eJk_P'dl ' (12)
Jl

1

Evaluating this pattern for a single source group and in a single direction requires Mb

operations, corresponding to the number of elements in the group (the integration over

the line segment is performed as a summation). Consequently for Lb groups and Q

directions for each group, the operation count is QMbLb.

2. The translation operation is employed to evaluate the pattern of a source group at a
test group. Mathematically,

At(¢q) = Vt,(¢q)Tu,(¢q) (13)

For Q directions and Lb source and test groups, this process involves an operation

count of QL_.

3. At the receiving group, the fields are redistributed. Mathematically,

Q

Hff(P) = k°Y°A¢_--_ At(¢q)e -jkS'z (14)
4rr

q=l

Thus, computing the redistributed field at a single point requires Q operations, and

for La groups each containing Mb unknowns the operation count is QLbM_.
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The total operation count in the at,ore sequence is ('_Q.'tl, I.,- (':QL::. l_v da,osing. Q --- 3I.
\.*

for convergence, the opera_ion c(,un_ is gi_(.n },v (',._h.\', -(':XyT. a,,d o,_ :_'_ing 31. -.- \ \,.

the final operation counl is .\_!" lnlprox,'nmntsto the ot_erati_,,, count ¢'a,, },_' achi,.v¢.¢t 1,\

nesting groups leading to the multi-level t:._I.M.

Beyond the math. the above breakdown of operations are }_as¢'d oli tile' n_ana_cl-w_,rkcr

model. Basically. we can view each group as managed by t}le cenler e]enmltl wit h lhc worker>

comprising the elements of the group. Comnmnication/interaction among the grout_s Iake_

place through the managers which in turn interact with the group elements, floweret, this

type of model is based on certain simplification/decompositions of the original boundary

integral. Clearly, they reduce the direct interdependence of each group member with other

elements belonging to different groups. This is the essence of the CPI" speed up afforded

by FMM. tIowever there are inherent approximations which must be understood in order 1o

assess the accuracy of each F.M.M algorithm.

3.2 Windowed FMM

In the exact FMM, the translation operation between groups was considered isotropically.

But, it is suggestive that the groups would interact very strongly along the line joining them

and less strongly in other directions. It was shown that by employing a high frequency

analysis [7], that the translation operator could be contemplated as being composed of a

geometrical optics term, along the line joining the source and test group, and two uniform
diffraction terms associated with the shadow boundaries of the GO term. The translation

operator for different group separation distances along the groove of width 50A is shown in

Figure 4. The number of unknowns on the boundary are 750, resulting in 27 groups. It is

seen that the "lit" region of the translation operator decreases with increasing group sepa-

ration distance, eventually displaying the predictable sine function behavior for large group

separation distances. The high frequency analysis enables the identification of a lit region

even for groups which are not very widely separated. Thus the plane wave interactions can

be filtered by defining a filter function as

1 (lCq- Cu'[ < ft.)W.,(¢_) = ¢-_¢1._-*'''1-_'1_ (1¢, - ¢"'1 > _)

(15)

with

(O+l)fi_ = sin-' k_-k_,7 ' (16)

and c_ is the taper factor. The discretized plane wave expansion is now

koYo A¢ q
H s - _ ZWw(¢q)Tlt,(¢q)Vt,(¢q)e-Jkq'_ (17)

q--1

N 2

The operation count now associated with (13) is now reduced to CaL_ ,--, =_b with the cor-

responding total operation count given by CaMbNb + C4N_-_r_.Grouping the unknowns with
_b
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.N_/:_ per group, results, in am operation count of ()i.\'a_. Tl_' compu_atiou of the, I,oui_l-

arv integral matrix vector producl tw emi,loyiug the windowed I"._I._I i- _t*'t_i_'_*'*l lfiCtt,riailv

in Figure .5. 11 is seen that the filter ha_- the effect of elirllil_ating iAaue wavc inleractiou>

at directions away fronl the line joining the interacting group,,,. The spectrunl of int_,rac-
tions around the line joining the centers of the two groui_s whicl_ are retained, reduce,> willl
increasing group separation distance.

3o00 I " I I 1 1

Groups 1 and 3

""_ 1,50 l v) i i:v._ "°ups 1 and 8

.GO

-180 -120 -60 0 60 120 180

¢ -¢¢ ,(dega )

Q=54; pff,= 5 z

...... Q=54; p/f,= 15 k.

.....

Figure 4: The Translation operator for different groups on the boundary of a 50A wide

groove; 750 BI unknowns; 27 groups

3.3 Fast Far Field Algorithm

The third algorithm employed for hybridization was the fast far field algorithm (FAFFA)

which is an approximate version of the FMM. Unlike the exact FMM, where the kernel is

approximated with the addition theorem, in this algorithm the large argument approximation

25 ¢-jkopl,l . . .--
H0(_}(k0 _- _ ) .-. e-Jko,i,,'o,--Z_2__J_e-Jko,_,,, p.,,

V 7"( X� IgoPI'I
(_8)

is used, where pvt is the distance between the center of the test group I and the center of

the source group l'; p,,v is the distance between the nth source element and its group center

and Plm is the distance between the mth test element and its group center, as depicted in

Figure 6. It should be noted that the use of the large argument expansion, as an additional
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Figure 5: Computation of the boundary integral matrix vector product using windowed

FMM

approximation, necessitates that the FMM procedure can now be used for groups which are

only very well separated. The decoupling of the test-source element, interactions in the kernel

as in (18) enables the computation of the matrix-vector product for far-field groups with a

reduced operation count as detailed in the following sequence.

1. For each test group, the aggregation of source elements in a single source group involves

Mb operations, corresponding to the number of elements in the source group. The

aggregation operation corresponds to

Mb

= Z MS (19)
3=1

. Since the above aggregation operation needs to be done for all source groups the

operation count becomes O(--_bMb ) ",_ O(Nb), where N__Mbrepresents the total number of

groups. Also this operation, being dependent only on the test group rather than the

test element, needs to be repeated for _ test groups leading to a total operation count

of O( .-_-,") for aggregation.

3. The next step is a translation operation corresponding to

Art = TmVm (20)

where

= _/_j e-jk°p_q
Tm V g _ (21)

N 2

Since this needs to be done only at the group level, it involves O( _-_b) operations for all

possible test and source group combinations and is the least computationally intensive

step.
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Figure 6: Computation of the boundary integral matrix vector product using the FAFFA

4. The final step in the sequence would be the process of disaggregation corresponding to

the operation
Nb /Mb

H:(p) k_--
o

- __, At,_e-jk°_;'''_'-_ (2"2)
P=I

Conceptually, this process is the converse of aggregation. Since this operation involves

only the source group instead of the source element it needs to be done for each source

group thus implying an O( _-_-_ operation to generate a single row of the matrix-vector
Mb ]

product. To generate Mb rows corresponding to a test group the operation count would

be O(Nb). With N__ test groups, the operation count would be of O(.N--]-]).
Mb Mb"

5. The near field operation count being of O(NbMb) and the far field being o(N---_-_ gives
Mb ]

a total operation count of

N?
Op.count ,,, CINbMb + C2 "°

Mb
(23)

Typically, we can set the elements in each group, Mb = _ and as a result the total

operation count is O,-_ N_ "5.

4 Results

A computer code based on the above formulation was implemented and executed on a HP

9000/750 workstation with a peak flop rate of 23.7 MFLOPS. The geometry considered was

the rectangular groove shown in Figure 1. The performance of the hybrid algorithms with

respect to accuracy and speed were compared. The benchmark for accuracy was the RMS

error [9]. Table 1 compares the execution time and error of the standard FE-BI to the

FE-Exact FMM, FE-FAFFA and the FE-Windowed FMM for grooves of widths 25A, 35A
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and 50A. The depth of the groove was (I.35.\ with a lllal('rial tillil,o_ _,f _. = -1 aIid /_.=1

and was illurninatedat normal incidence. The data reveal- thal tll,' l"Ii-tixact t'._IXl t,tf,'r-

alrnost a 50(7, savings in execution time v:lth almost no ctmlptoitli,,,c in accttrac\. \Vllih' th<'
FE-FAFF.-\ is the fastest of the three ale.orithms, the t_Xl.v; error wa., sut_star_tiallv }_ietmr

(>1 dB). If the maximum tolerable I{.M5error is set at 1 dt+ [9 I. the l"ti-\\'ilidowed t".XlNI

is the most attractive option as it meets the error criteriotl whih' t_eing only slietltl', slowel

than the FE-FAIrFA. An observation of interest was the contl>arisoxt of the t+,.+sidual ('t'rot +as

Groove

Width

('PI Tim_ for BI (3Iinut(s.._(c<,iM.,)
Total

Unknowns

BI

Unknov,'ns

375"
FE-BI (CG)

i8.48)

FE-FAFF:\

!

FE-Exact FMM FE-WVMM

25A 2631 (3,26) (5,25) (4,13)

35A 3681 525 (16,34) (5,55) (10,31) (7,22)

50A 5256 750 (45,1) (14,31) (26,1_) (16,10)

RMSerror (dB)
Groove Width FE-FAFFA FE-Exact FMM FE-WFM_I

25A 1.12 0.0752 0.6218

35A 1.2 0.1058 0.721

50A 1.36 0.1123 0.843

Table 1: CPU Times and RMS error of the hybrid algorithms

a function of the number of iterations in the CG solver for the hybrid algorithms. This is

shown in Figure 7. It is seen that the convergence curves for the FE-BI and the FE-Exact

FMM overlap each other to graphical accuracy while the FE-Windowed FMM shows a very

small deviation. Thus, the hybridization of the FMM does not have a deleterious effect on

the conditioning of the FE-BI system.

The execution time of the fastest of the three hybrid techniques, the FE-FAFFA is com-

pared with the FE-BI employing the special CG-FFT solver, suited for only planar apertures

in Table 2. It is seen that the CG-FFT solver is substantially faster but is applicable only

to convolutional boundary integrals.

The performance of the hybrid algorithms at a more stressing angle of incidence is de-

picted in Figure 8. The RMS error follows the same trend as for normal incidence illumi-

nation. The width of the groove illuminated was 10A and this example reveals that the

technique is scalable for smaller problems. The near group radius in this example was 1A;

implying that the matrix vector products for groups separated by a distance less than a

wavelength was computed using the exact method of moments procedure. It has to be noted

that the application of the hybrid techniques for the 10A groove illustrates that the near-

group radius can be reduced as the problem size becomes smaller down to a minimum in the

vicinity of 0.3A.
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Figure 7: Convergence curves for the hybrid algorithms for the groove of width 25A

4.1 Summary

The hybridization of the finite element - boundary integral and fast multipole methods was

examined from a computational performance point of view. Three different versions of the

fast multipole method was used for executing the matrix-vector product associated with

the boundary integral. It was shown that a considerable reduction in CPU time could be

achieved and further reductions are likely as the boundary integral increases in size. The

FE-Windowed FMM provides the best compromise in terms of speed and accuracy. The

FE-BI with the CG-FFT solver is faster than any of the FEM-FMM versions and can be

used if the terminating boundary is amenable to its use.
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Abstract

A metal-backed layer of absorbing material offers a number of advantages for truncal-

ing the computational domain in a finite element simulation. In this paper we examine

isotropic and anisotropic absorber layers for the purpose of truncating finite element

meshes. Optimal design curves are presented for these absorbers that can be used to

select the various parameters (thickness, propagation and sampling rate) so the reflectiv-

ity is minimized. Applications to radiation and scattering problems are also considered,

and these illustrate the accuracy and versatility of tile absorber layers for large scale

electromagnetic simulations.

1 Introduction

In the numerical solution of electromagnetic scattering and radiation problems it is necessary

to truncate the computational domain in a manner which ensures that the waves are outgoing.

This is true also in the analysis for many microwave circuits, and the need to terminate the

mesh is common to finite element (FEM) and finite difference-time domain (FDTD) methods.

One way to do so is to enforce an absorbing boundary condition (ABC) at a surface as close as

possible to the scatterer or radiator, and a review of available ABCs has been given by Senior

and Volakis [1]. Unfortunately, ABCs are limited in their ability to conform to the surface of

the scatterer. They may also require an a priori knowledge of the wave's properties and, in an

FEM solution, they generally reduce the rate of convergence. Another way of terminating the

mesh is to use a metal-backed layer of isotropic or anisotropic absorbing material [2,3,4,5], and

such layers are often referred to as artificial absorbers since their material parameters may be

physically unrealizable.

The implementation of artificial absorbers for finite element mesh truncation is illustrated

in Fig. 2 and as expected the layer's material composition plays a major role in the perfor-

mance of the artificial absorber. However, the chosen numerical discretization of the absorber

has an equally important role and cannot therefore be ignored in the design of the absorber for

numerical simulations. In this paper, we examine the performance and design of both isotropic

and anisotropic homogeneous absorbers for truncating finite element meshes. Their applica-

tion to the finite element solution of three dimensional radiation and scattering problems is

also considered and results are shown which demonstrate the utility of these mesh truncation

schemes.
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2 Analytical Study

Consider tile melal-backed planar laver shown in Fig. 2ia). lhc surface ,r= 0 is Ill_' illl,'rfacv

betwee_l free space (in x < O) and a ]ossv material (in ,r > O) t)acked by a t)erf('cl eh,clric

conductor at as = t. For an incident plane wave

E: or H: = t-J_°(_¢°_°+_i''¢') (1)

the reflection coefficient is Re(o) or RH(O), and tile objective is to minimize these.

If the laver is composed of a homogeneous isotropic materia] whose relative permiltixilx (_

and relative permeability p_ are such that e_ =/z_ = b = o - j3 (say), then

RE(e)) = _¢1 - b-:sin 2¢- j cosotan(k0btv/t - b-2 sin :¢) , (2)

¢1 - b-2 sin 2 ¢ + j cos (p tan(kobt ¢1 - b-2 sin 2 ¢)

RH(¢) = V/1 -- b-2 sina ¢-jc°sCc°t(k°btv/1 - b-2sin: ¢) (3)

V/1 - b -2 sin 2 ¢ + j cos ¢cot(k0bt ¢1 - b-2 sin 2 ¢)

These differ because the presence of the metal backing has destroyed duality, and at grazing

incidence (¢ = _/2), RE = /_H = --1. If sine > 1, i.e. ¢ = 7r/2 + j6 with (f > 0 so that

sin ¢ = cosh (f and cos¢ = -jsin (f, IRI differs from unity by only a small amount for both

polarizations. The behavior of IRE,H(dp) I as a function of sin4, is illustrated in Fig. 3. At

normal .incidence (¢ = 0), (2) and (3) give

RE,H(O) -- :$:e -2jk°t(a-j_} (4)

whose magnitudes are independent of a and can be made as small as desired by choosing

k0t/3 sufficiently large. Since large values of/5' produce rapid field changes in the dielectric, a

disadvantage is that high (and often very high) sampling rates are necessary to simulate them

numerically.

As kot --+ oc, RE,H(d)) _ 0 only for normal incidence, but Sacks et al [4] have shown that

a particular uniaxial anisotropic material has this property for all ¢ < _'/2. The result is an

example of a perfectly matched layer (PML), and if

_ _ 1

g_ = _, = b?- (b- _)&& (5)

where I is the identity tensor and b = c_ - ji3, then

RE,H(¢) = _e -2jk°t(a-j_)c°s¢ (6)

which reduces to (4) in the particular case of normal incidence. If k0_ >> 1 the reflection

coefficients decay exponentially for all ¢ < _'/2, and since (6) is also valid for sin ¢ > 1, the

choice a > 0 ensures an exponential decay for these angles as well. The behavior of IRE.n(¢)I

is illustrated in Fig. 3 for the same values of kot, o and/3 used for the isotropic layer. Clearly,

a major advantage of the PML is that its reflection coefficient remains low for a wide range of

angles of incidence.
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3 Absorber Design

The theoretical behavior of the reflect ion coefficient ]tgl for t lw met al-}mckod lax'ors i.'<wight ix'ely

simple. In the case of the isotropic material, an increase in ._ and/or t decreases If?(0)I. The

uniaxia[ material has this behavior for all real angles of incidence, and while a plays little or

no role. large values of o do produce higher absorption for complex angles. It follows that

for a uniaxial laver of given thickness t. o and 3 can be chosen sufIicientlv large to produce

high absorption over a broad angular spectrum, with angles near o = 7/2 providing the only

exception.

Unfortunately, the analytical results do not immediately translate into numerical perfor-

mance. Because of the discretization inherent in an FEM inlplementation, the fields inside the

layer are reproduced only approximately, and this is particularly true for a rapid]y decaying

field. To design a good absorber it is necessary to understand the impact of the sampling rate

on the choice of a, f_ and l, and our objective is to find the minimum number of sampling ele-

ments ( or discrete layers) to achieve a specified ]R]. It is anticipated that the errors introduced

by the discretization will have a number of consequences. In particular, for a given number N

of discrete layers and given t, increasing j3 will ultimately lead to an increase in IRI because

of the inability to model the increasing attenuation, and an increase in a will likely produce a

similar effect. To obtain some insight into the roles played by N, a, /3 and t, a simple FEM

model for computing the reflection coefficient of a metal-backed absorber layer (see Fig. 1 ) was

considered.

We examine first a homogeneous isotropic layer at normal incidence for which the theoretical

reflection coefficients are given in (4). In spite of the fact that the magnitudes are the same

for both polarizations, a polarization dependence shows up in the FEM implementation. This

is illustrated in Fig. 4, and we note that as N increases, the FEM values of IR(0)I converge

to the common theoretical value for both polarizations. The nulls associated with the H-

polarization curves are characteristic of the behavior of the modeled absorber layer, and are

due to the interference of the reflected fields from the dielectric interface, the metal-backing

and the individual layers used to model the absorber numerically.

Given the many parameters (/3, c_, t, N), it is essential to consider some optimization of

the proposed metal-backed absorber as a function of these parameters. For this purpose, a

study was carried out using the FEM code mentioned above. Initially, an investigation was

performed to examine the effect of each parameter on the absorber's performance. As can be

expected, a plays little role in the performance of the absorber for relatively small values of

/3t/)%. Also, larger values of N for the same thickness t lead to lower reflection coefficients.

An optimum value exists but this depends on/3, the absorber's decay parameter. However, the

most important observation from this preliminary study concerns the scalability of the product

/3t. It was found that for small values of cr and for thicknesses up to at least 0.5 wavelenths, the

reflection coefficient is a function of the product /3t/)% alone. As a result, one can construct

reflection coefficient curves as a function of/3t which are optimum for a given N. Fig. 5 gives

such design curves by plotting [R(0)I and N versus 13t/,ko on the same figure, and these can be

used to determine the optimum N for a given Ot/Ao. To see how to use the figure, suppose that

the desired reflection coefficient at normal incidence is -50 dB. In Fig. 5 we observe that the

[R(0)[ curve intersects the -50 dB line at/3t/)% "_ 0.58, and referring now to the N curve, the

number of elements required is N = 10. The value of/3 can then be found by specifying either
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the element sizeor the laver thickness. "lhus. for elenlenls(I.025A thick, we have t = 0.27)At,

and 3 = 2.32. By increasing .\" we can ilnprove the lmrfornmnc_ , tl[, l',_ the limil prox'id_,d i_\

the theoretical value of {R(0) I which has been included in Fig. 5. A good approximation Io the

tong-dashed curves in Fig. ,5 obtained by linear regression is

3t
- -0.01061R I + 0.0433 (7)

Ao

N = 0.147exp[7.35331/)_0] (8)

where ]R] is measured in dB and :\ is the smallest integer equal to or exceeding the right hand

side of (8).

4 Application to Antennas and Scattering

The above study dealt with planar absorber layers but the layers can also be curved for ter-

minating finite element meshes in a conformal manner. This is illustrated in Fig. 1 where the

artificial absorber layer is used to terminate the computational domain surrounding a patch

antenna. Conformal mesh terminations are quite attractive in FEM modeling because they lead

to a substantial reduction of the computational volume and are also compatible with structured

as well as unstructured meshes. In contrast to absorbing boundary conditions, they do not re-

quire a knowledge of the closure's principal radii of curvature and uniaxial artificial absorbers

offer the possibility of reflectivity control as low as -60dB.

To illustrate the applicability of the artificial absorbers in FEM modeling, two examples are

considered, one dealing with antenna analysis and the other with scattering by a non-canonical

structure. For simplicity both cases employed a simple version of a homogeneous artificial

absorber consisting of three layers 0.05,_o thick as shown in Fig. 1. The attenuation constant

for each layer was _ = 2.6, and thus ,0__!= 0.405. From Fig. 5 this absorber provides a normal

incidence reflection coefficient of -30dB, and from the same figure we also read off that this

reduction can be realized with 3 layers or more. Thus, the design of the proposed homogeneous

absorber is consistent with the curves given in Fig. 5.

The absorber termination shown in Fig. 1 has been used to model a variety of patch

(circular and rectangular) antennas on doubly curved platforms, including circular, spherical,

conical and ogival surfaces. Of particular interest is the computation of the resonant frequency

which is a rather sensitive quantity and its accurate computation via the proposed FEM model

provides a good test of the absorber's performance. Fig. 6 shows the results for a rectangular

patch antenna mounted on the conical surface illustrated in the figure. The patch resides on

a substrate having e_ = 2.32 and a thickness h = 0.114cm. Its dimensions are given in Fig. 6

and on the basis of the approximate cavity model it resonates at 3.2GHz. From the computed

input impedance plot, it is seen that the resonance frequency predicted by the FEM code is

3.115GHz, which is within 3 percent of the cavity model. The FEM computations were carried

out using prismatic edge elements and the surface grid is also shown in Fig. 6. A total of 2358

prisms were used for this analysis resulting in 3790 degrees of freedom.

As a scattering example we consider the radar cross section of the NASA metallic almond

[6] shown in Fig. 7. This body is 9.936 inches long, and precise formulae for describing its

surface are given by Woo et. al.[6]. Measured data are also available at several frequencies and
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carl be used to benchnlark tile accuracy of the sinmlatiolJ. Our tinilceh'nwnl cod¢' Ft:.NI:\TS

[7] was used to model tile almond illunlinaled with a plane wave al a freque]lc.v 1.19Gtlz.

This code employs edge-based tetrahedral elements a]ld lhe mesh was again terminated using

the aforementioned 3-layer homogeneous artificial absorber. For ease of n'Lesh generalion, a

structured prismatic mesh was first generated conformaI lo the almond's surface and consisted

of nine 0.05)_ layers with the outer layers occupied by the artificial absorber. The structured

prismatic mesh was then turned into a tertrahedral mesh resulting in a total of 46.87S edges.

Fig. 7 displays the computed radar cross section(RCS) computations with the measured ones

for both polarizations of incidence. The patterns are taken in the plane most parallel to the flat

side of the almond(non-symmetric plane), with zero degrees corresponding to incidence tip-on.

As seen. the calculations are in good agreement with the measured data except at near 90

degrees for HH polarization. However, other reference calculations based on a moment method

code are in agreement with the FEMATS data. suggesting that the discrepancy mav be due to

minor alignment errors in the measurement.

5 Conclusion

In this paper we investigated homogeneous isotropic and uniaxial artificial absorbers for finite

element mesh truncation. By properly selecting the material properties and sampling rate, it

was demonstrated that almost any desired level of absorption can be attained, and typically

very few samples (less than five) are needed to achieve a reflection coefficient of-40 dB over

a wide range of incidence angles. Design curves were presented which can be used to select

the various parameters (loss, thickness and sampling rate) on the basis of a desired reflection

coefficient. As expected, a lower material loss requires a thicker absorber to produce the same

reflection coefficient but, on the other hand, a higher attenuation rate requires more samples to

attain a lower reflection coefficient in a numerical implementation. Most likely, inhomogeneous

(tapered) artificial absorbers can lead to lower reflection coefficients, but these have not yet

been investigated to any great extent.

In contrast to absorbing boundary conditions, a particular advantage of the proposed ab-

sorbers is that they can be used to terminate a finite element mesh conformal to the target

or radiator surface without needing a priori information about the wave's propagation char-

acteristics. To test the performance and applicability of the proposed absorber for truncating

finite element meshes in a three dimensional setting, two examples were considered.Namely,

computation were carried for the input impedance of a patch antenna on a conical surface and

the radar cross section of a non-canonical slender body. In both cases the computed values

were in good agreement with reference data by using the proposed artificial absorber for mesh
truncation.
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Figure 2: Geometry of the metal backed absorber layer and its finite element discretization.
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ABSTRACT

A metal-backed laver of absorbing material offers a number of ad-

vantages for truncating the computational domain in a finite element

simulation. In this paper we present design curves for the optimal se-

lection of the parameters of the layer to achieve a specified reflection

coefficient. The curves are based on one-dimensional finite element sim-

ulations of the absorbers, and the optimization is therefore a function

of the sampling rate. Three types of material are considered, including

the recently introduced perfectly matched uniaxial material, either ho-

mogeneous or with a quadratic material profile. Two three-dimensional

applications are also presented and used to examine the validity of the

design curves.

1 INTRODUCTION

In the numerical solution of electromagnetic scattering and radiation

problems it is necessary to truncate the computational domain in a

manner which ensures that the waves are outgoing. This is true also

in the analysis for many microwave circuits, and the need to terminate

the mesh is common to finite element (FEM) and finite difference-

time domain (FDTD) methods. One way to do so is to enforce an

absorbing boundary condition (ABC) at a surface as close as possible to

the scatterer or radiator, and a review of available ABCs has been given

by Senior and Volakis [1]. Another way is to use a metal-backed layer
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of isolropic absorbin_,2 nlaterial :2.:1. t,uT t_oth scl_(.ll_c_ l_ax,, liii_ila_i_,l_-.

t:or example, an :\13(' require, a prtorl knowl_'de_,, of Ill,' l)rot_a_alit,ll

coilslallt whi(h, ill a nlicrowav(, prol)lenl, may llt:'I },(' l tl(' Salll_,' ill Jill

section of the computationa] domain. Also. w],.n used lt_ Icrlninalc

an open domain. :\B('s reduce the convergence ral(' and lnav 1,, ]lard

to implement on a surface conforma] Io the scalleier or radiator..-\n

isotropic dielectric laver alleviates some of lhese difticulties, but its

accuracy and aspect coverage are limited.

Recently a new anisotropic absorber has been proposed for termi-

nating the domain. By introducing an additional degree of freedom.

Sacks et al. [4] have shown thai a uniaxial malerial can be designed to

have zero reflection coefficient at its interface for all augles of incidence.

If the material is also lossy, a thin metal-backed laver can be used to

terminate an FEM mesh, and though the material is no longer realiz-

able physically, the associated fields are still Maxwellian. This is often

referred to as a perfectly matched layer (PML), and its development

was motivated by the non-Maxwellian layer introduced by Berenger [5]

(see also [6]) for FDTD problems. By choosing the parameters ap-

propriately, it is possible to achieve any desired level of absorption for

almost all angles of incidence using only a thin layer, but its numerical

simulation is a more challenging task. Because of the rapid exponential

decay of the fields within the layer, there are large variations in a small

distance, and it is difficult to reproduce these in a numerical simula-

tion. Thus, for a discretized PML, the numerical sampling as well as

the material properties affect the reflection coeNcient that is achieved.

In this paper we consider the design and performance of three types

of metal-backed planar layers for terminating FEM meshes: homoge-

neous isotropic, homogeneous anisotropic (uniaxial), and inhomoge-

neous (tapered) uniaxial materials. Using one-dimensional finite ele-

ment simulations, their numerical performance is examined and com-

pared with their theoretical capability. Not surprisingly, the sampling

rate has a major effect on the reflection coefficient. Based on a detailed

numerical study, we identify scalable parameters in the numerical model

and use these to generate design curves and formulas for choosing the

sampling rate and material properties to achieve a specified reflection

coefficient. As expected, a tapered uniaxial material proves superior

to the homogeneous one. The applicability of these results to three-

dimensional problems is then illustrated for a simple microwave circuit

and a rectangular waveguide.
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Figure 1 Geometry of the metal-backed absorber layer (a) and its FEM

implementation (b).

2 ANALYTICAL STUDY

Consider the metal-backed planar layer shown in Fig. 1(a). The surface

x = 0 is the interface between free space (in x < 0) and a lossy material

(in x > 0) backed by a PEC at x = t. For an incident plane wave

Ez or H= = e -jk°(xc°seb+ysin¢) (1)

the reflection coefficient is RE(C) or RH(¢) , and the objective is to

minimize these. If the layer is composed of a homogeneous isotropic

material whose relative permittivity e_ and relative permeability #_ are

such that e_ = #_ = b = c_ -j/5' (say) where c_ and/3 are real, then

RE(C)= V/1-b-2sin2¢-jc°sCtan(k°btv/1-b-2sin2¢), (2)

V/1 - b -s sin s¢ + jcosCtan(kobt_/1 - b-2sin 2 ¢)

_/1 - b-: sin s ¢ - j cos ¢ cot(k0btv/1 - b-s sin: ¢)

RH(¢) = _,/l_b_2sin:¢+jcos¢cot(kobtv/l_b_Ssin2¢) (3)

These differ because the presence of the PEC backing has destroyed

duality, and at grazing incidence (¢ = rr/2), RE = RH = --1. If

sine > 1, i.e. ¢ = rr/2+ja with _ > 0 so that sine = cosha and

cos¢ = -jsin _, IRI differs from unity by only a small amount for
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Figure 2: Analytical results for homogeneous isotropic and anisotropic

absorbing layers with t = 0.25A0 and b = 1 - j2: (...) isotropic E pol.,

(- •-) isotropic H pol. and (--) anisotropic.

both polarizations. The behavior of IRE,H(&)[ as a function of sin ¢ is

illustrated in Fig. 2. At normal incidence (0 = 0), (2) and (3) give

RE,H(O) = q=e -2jk°t(a-jz) (4)

whose magnitudes are independent of a and can be made as small as

desired by choosing kot13 sufficiently large.

As kot --+ _, RE,H(¢) --+ 0 only for normal incidence, but Sacks et

al. [4] have shown that a particular uniaxial anisotropic material has

this property for all 0 < rr/2. The result is an example of a perfectly

matched layer (PML), and if

_ = 1
_r = -fir = hi- (b- _-)kk

O
(5)

where I is the identity tensor, then

RE,H(¢) = _=e -2jk°qa-jo)c°s¢ (6)

which reduces to (4) in the particular case of normal incidence. If

k0fl >> 1 the reflection coefficients decay exponentially for all ¢ < 7r/2,

and since (6) is also valid for sin¢> 1, the choice a > 0 ensures an

exponential decay for these angles as well. The behavior of IRE,n(¢)I

is illustrated in Figure 2 for the same values of kot, c_ and /3 used for
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the isotropic ]aver. ('tcarlv. a l_ajovadxan_a_c of_i., l'.Ml, i> ttka_ i_

reflection co<'fficien_ remains low for awi&, ratlg_' of ail_h'_ of iz_<i_t_'iic_,.

Although the outer surface of il,e laver is rcft,'ciioilh,.,,,, f<>r all <,.

the abrupt change in the material l)roperlies al .r = (I nlav produc_' a
contribution in an FEXI solution. \Vo can eliminalc tile discont inuitv t,v

tapering the properties as a function of a to produce an inhomogeneous

anisotropic laver..As shown by Legault and Senior [7J. if b _ {.r'.(.r)}=_

a wave prolmgating into the malerial has the form

and when

_(m)= l+(a-j_-l) , (8)

which tends to unity as z _ 0+, the reflection coefficients of the laver

are identical to those given in (6). With this expression for "_(z), the

attenuation is less where the field is larger, i.e. close to the interface,

and increases as the field is absorbed. A simplified version of (8) is

employed in Section 3.4.

3 NUMERICAL STUDY

For all three types of layer the theoretical behavior of IRI is relatively

simple. In the case of the isotropic material, an increase in _ and/or

t decreases IR(0)I. The uniaxial material has this behavior for all real

angles of incidence, and while a plays little or no role, large values of

a do produce higher absorption for complex angles. It follows that for

a uniaxial layer of given thickness t, c_ and/5' can be chosen suflqciently

large to produce high absorption over a broad angular spectrum, with

angles near ¢ = rr/2 providing the only exception.

Unfortunately, the analytical results do not immediately translate

into numerical performance. Because of the discretization inherent in

an FEM implementation, the fields inside the layer are reproduced only

approximately, and this is particularly true for a rapidly decaying field.

To design a good absorber it is necessary to understand the impact of

the sampling rate on the choice of a,/_ and t, and our objective is to

find the minimum number of sampling elements (or discrete layers) to

achieve a specified IRI. It is anticipated that the errors introduced by

the discretization will have a number of consequences. In particular,
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Figure 3: Numerical results for a homogeneous isotropic laver with

t = 0.15A0 and b = -j2.5. The top four curves are for E pol., the

bottom four for H pol.: (--) exact, (- - -) N=3. (- - -) N=6 and (--

--) N=12.

for a given number N of discrete layers and given t, increasing/3 will

ultimately lead to an increase in IRI because of the inability to model

the increasing attenuation, and an increase in a will likely produce a

similar effect. To obtain some insight into the roles played by N, e, [3

and t, we now consider a simple FEM model of the layers.

3.1 Numerical Model

A one-dimensional FEM code was used to examine the numerical per-

formance of the absorbing layers. The computational domain was lim-

ited to the discretized layer structure shown in Fig. l(b), with the

appropriate boundary conditions applied at the interface z = 0 and the

PEC backing z = t.
We consider first a homogeneous isotropic layer at normal incidence

for which the the theoretical reflection coefficients are given in (4). In

spite of the fact that the magnitudes are the same for both polariza-

tions, a polarization dependence shows up in the FEM implementation.

This is illustrated in Fig. 3, and we note that as N increases, the FEM

values of ]R(0)} converge to the common theoretical value for both po-
larizations.
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3.2 Dependence on (_ and

For a laver of constallt thickn,>s the theoretical \alum, of ,l_'t ()_' i,, ill-

dependent of o and polarization, but in the nuI1wIical inlt)l(qlwl_talioI_

lhe behavior is much more complicated. Figure -I bhows Ih'lt) l_: plollcd

versus o and 3 for a laver of thickness l = 0.25,_0 made up of .5 t=.\!
elements, where the darker tones indicale lower values, t:o_ small .'_ the

results are in close agreement with theory. As evident from tl,e level

lines. Ih'(0){ is almost independent of o and decreases exponentially

with d. leading to a linear decrease on a dB scale. I"or large d. how-

ever. the behavior is quite differenl, and the mosl striking fealure is the

series of deep minima whose spacing in o increases with increasing o

and decreasing ft. These are numerical artifacts which are common to

both polarizations and may depend on the parlicular nunmrical code

employed. The minima for the two polarization are interlaced, and for

H polarization the first minimum occurs al o = 0. d = 1.6. Their

locations also depend on ! and N. If N is fixed, the spatial sampling

is inversely proportional to t. Decreasing I results in better sampling,

pushing the minima to higher values of /3 and producing agreement

with the theoretical values for larger fl than before. Increasing t has

the opposite effect. On the other hand, if t is fixed, increasing N im-

proves the accuracy, and shifts the minima to higher /3. Apart from

the minima, the reflection coefficients for fixed/3 increase slightly with

increasing a, and it is therefore sufficient to confine attention to the
lower values of a.

In Figure 5 the reflection coefficients are plotted as functions of fl

for the same layer with o = 0 and a = 0.75. The curves correspond

to vertical cuts through the patterns in figure 4, and we also show the

theoretical value obtained from (4). We observe that as fl increases the

reflection coefficients decrease initially at almost the same rate implied

by (4), but beyond a certain point they begin to increase. The deep

minimum at a = 0 and fl = 1.6 in Figure 4(a) is clearly seen, but

for design purposes it is logical to focus on the worst case, i.e. the

polarization for which the reflection coefficient is larger. The upper

curves in Figure 5 are almost identical and constitute this case. Since

they correspond to two different values of a, either of them would

suffice, but for reasons that will become evident later, we choose a = 0.
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Figure 4: Plot of IR(0)I in dB for (a) an H polarized and (b) an E

polarized wave incident on a homogeneous isotropic layer with t =
0.25,_o and N = 5. The solid curves are level lines.
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Figure 5: IR(0)l with t = 0.25Ao and N = 5: (--) Exact. (-- --)

o = 0 E pol., (---) o =0H pol., (-- -) o = 0.75 E pol. and (--.)

o= 0.75 H pol.

3.3 Dependence on/3, N and t

We now seek a connection between the values of 3, N and t for which

IR(0)[ is minimized. To this end, we first examine IR(0)I as a function

of 13 and N for constant t, and the resulting plot is shown in Figure 6

for E polarization with t = 0.25A0 and a = 0 as before. For fixed/3

the reflection coefficient tends to its exact values as N increases. This

is evident from the level curves and, as expected, the convergence is

better for the smaller/3. Consider now the behavior of IR(0)I for fixed

N. As /3 increases from zero, the reflection coefficient decreases to a

minimum and then increases. The location of the minima is indicated

by the solid line. This is consistent with the behavior shown in Figure

5 and the upper curve is, in fact, just a vertical cut through Figure 6

at N = 5. The solid line in Figure 6 therefore gives the value of/3 at

which ]R(0)I is a minimum as a function of the number of elements.

If the process is repeated for other layer thicknesses, it is found that

for minimum IR(0)I the curve of _t/,ko versus N is virtually the same

for all thin layers. The observation that /3t/Ao is a scalable parameter

is an important conclusion of our study, and by choosing a constant

layer thickness we can produce a universal curve for the optimal choice

of N and /3 in FEM simulations. Such a curve is shown in Figure 7

and can be interpreted as giving the value of 13t/Ao for a specified N

to minimize the reflection coefficient [R(0)I. For example, if t = 0.2Ao
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Figure, 6: [R[ as a function of fl and N for E pol. with ! = 0.25A0 and

o = 0. The dashed curves are level lines and the solid curve gives the

location of the minimum ]R[.

and N = 3, then _ = 2.13. If a smaller value of fl is chosen, IR(0)I

will be larger (see Figure 5), and this can be attributed to the fact

that the field reflected from the metal backing has not been attenuated

sufficiently. If t3 is set to a value larger than 2.13, IR(0)] will still be

larger because the chosen N is too small to reproduce the rapid field

decay within the layer.

So far we have considered only normal incidence, but for the anisotropic

layer it is a simple matter to extend the results to all real angles of in-

cidence 4_ < 90 °. As evident from the exponent in (6), the absorption

at normal incidence is reproduced at any angle if the layer thickness is

inversely proportional to cos _. This can be achieved by specifying the

layer thickness t as a fraction _ of the wavelength Ax along the normal

(or :r axis) to the material interface. Since t = 6Ao/cos ¢ = 6A_, t/A_

is now independent of ¢ and the scalable parameter 13t/Ao (at normal

incidence) becomes fit�A=. For the anisotropic layer, all the results

obtained at normal incidence are made applicable for arbitrary ¢ by

substituting A= for A0. For example, plotting the optimum flt/A_: as a

function of N duplicates the curves shown in Figure 7. This notion can

also be used to account for problems where the outer medium is not

free space. In such cases, we have A= = A0/x/_-_ (at normal incidence)
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t = 0.15A0, (-- --) t = 0.25A0 and (- - -) t = 0.5A0.
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where _T is the relative permittivity of the outer medium.

Although the scaling property' of '3t/,_ has been established only

for o = 0, it holds to a reasonable degree for small o ¢ 0. but as a

increases, the f3t/,_: versus N curves become increasingly dependent on

a. The scalability also extends to the associated values of IR(o)], and

this enables us to provide a simple design prescription for an absorbing

layer.

3.4 Design Curves

Since the quantities/3t/A,: and IR(¢)I are the same for layer thicknesses

up to about 0.5_ at least, design curves can be obtained by plotting

IR(¢)I and N versus/3t/A,: on the same figure as shown in Figure 8. To

see how to use the figure, suppose that the desired reflection coefficient

at normal incidence is -50 dB. At ¢ = 0 we now have ,_, = )_0. In

Figure 8 we observe that the IR(0)[ curve intersects the -50 dB line

at _t/Ao _- 0.58, and referring now to the N curve, the number of

elements required is N = 10. The value of/3 can then be found by

specifying either the element size or the layer thickness. Thus, for

elements 0.025A0 thick, we have t = 0.25)_0 and/3 = 2.32. By increasing

N we can improve the performance up to the limit provided by the

theoretical value of IR(0)] which has been included in Figure 8. A good

approximation to the short-dashed curves in Figure 8 obtained by linear
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regression is

L?t
-- = -0.01061RI + 0.0433 (9)

N = 0.147exp[7.353Zt/A_] (10)

where A= = A0/cos ¢, IR] is measured in dB and N is the smallest inte-

ger equal to or exceeding the right hand side of (10). These equations

hold for ¢, 0 ° < ¢ < 90 °, for the anisotropic layer, and ¢ = 0° for the

isotropic one. The design criterion provided above applies to specific

angles of incidence. In the case where a specific absorption level is re-

quired over a range of angles of incidence the layer must be designed

for the largest angle occurring. Doing so ensures that the absorption is

superior at all smaller angles.

The performance can be improved by making the anisotropic mate-

rial inhomogeneous, and to illustrate this we consider the case 7(x) =

-j_ (x/t) 2 for which the theoretical reflection coefficient is the same as

before. The scalability is still preserved and the resulting curve is shown

in Figure 8. The fact that the curve for the quadratically tapered layer

lies below that of the homogeneous material confirms the improvement

in performance, and we can now achieve a reflection coefficient of -50

dB by choosing/3t/_ __ 0.64 corresponding to N = 9. Approximations
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to tim lor_,_,-dash_,d cu_\¢,> il_ t"i,.:'llr_..', ar_'

.t!
-- 0.0Ii_)ih'i - 0.O151 ,11 )

A:

.V = 0.2.qbexp [5.2G:I._I/'A. I _ 1:2)

where I/7] and .V are as before. Comi)ared with tl)e homogen¢,ous nla-

lerial the decrease in the number of elements required 1)ecomes more

pronounced as tRI is reduced. As previously mentioned, tllese equa-

tions hold for all real angles of incidence in the case of ih(, anisotrot>ic

laver and for normal incidence if the laver is isotropic.

4 THREE-DIMENSIONAL VERIFICA-

TION

As noted earlier, a PML is particularly attractive for terminating a fi-

nite element mesh in the simulation of microwave circuits. For these

applications a PML has an advantage over a traditional ABC because it

does not require an a priori knowledge of the guided wave propagation

constant. To demonstrate the applicability of the design equations in

three dimensions, we consider a shielded microstrip line and a rectan-

gular waveguide.

The microstrip line has width w = 0.71428 cm, substrate thickness

0.12 cm and relative permittivity e_ = 3.2, and is enclosed in a metallic

cavity whose dimensions are shown in Figure 9. It should be noted

that the height of the cavity from the microstrip line is sufficiently

large to suppress any reflections from the cavity walls. As a result,

the characteristic impedance of the line should be that same as if the

line was in free space. The microstrip line was terminated using a two-

section homogeneous uniaxial absorber having material parameters _,

_ in the upper section and 3.2_, _ in the lower section to match

the substrate. The calculations were carried out at several frequencies

using an FEM code [8] and we show the results for 4.0 GHz. At this

frequency the element width was 0.05,X0 and a five layer absorber having

a total thickness of t = 0.25,_0 was used. With a = 0 the computed
reflection coefficient of the transmission line structure as a function of

13 is shown in Figure 9. Recognizing that most of the field is confined

to the substrate, we have )_: = ,X0/v'gT_ = 0.559A0. Using t = 1.789,X_

and N = 5 in the design formulas (9) and (10) gives /3 = 1.07 and
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(b)

Figure 9: (a) Geometry for the microstrip line. (b) computed ]R[ for

the microstrip line at 4 GHz with c_ = 0. t = 0.25A0 and N = 5. The

intersecting straight lines indicate the predicted values.

]R] = -41 dB (indicated on the plot by the vertical and horizontal lines,

respectively). These values agree reasonably well with the numerical

results shown in Figure 9 where the maximum absorption occurs for

/3 _'2 1 and IRI -_ -50 dB. The fact that the minimum IR] is lower

than predicted is, perhaps, not surprising. We recall that the design

curves are based on the worst case, i.e. the polarization providing the

largest minimum IRI, and the curve in Figure 9 resembles more the H

polarization curve in Figure 5 than the E polarization which constitutes
the worst case.

The other geometry considered is the rectangular waveguide shown

in Figure 10. The elements are 0.5 cm bricks and the absorbing layer is 5

cm thick (10 elements used) with a material parameter b = 1 -j13. The

reflection coefficient was computed at 4.0, 4.5 and 5 GHz for various

values of j3 in order to determine the maximum absorption point. The

resulting reflection coefficients are plotted in Figure 10. Using equations

(9) and (10) with N = 10 yields/3t/)_= = 0.574 and ]R] = -50 dB. The

vertical and the horizontal lines in Figure 10 indicate the location of

these values. Once again, the agreement with the predicted values

is good, with only a slight discrepancy in the value of/3t/A,: and a

deviation of about 5 dB in the anticipated reflection coefficient. There

are two points to keep in mind here. First, the design criteria have been

applied to a non-normal incidence case in a three-dimensional setting.

Secondly, the real part a of the material parameter b was set to 1,
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Figure 10: (a) Geometry for the rectangular waveguide, (b) computed

]B t for the waveguide at 4.0 GHz (-- --), 4.5 GHz (..-) and 5.0 GHz

(--) with o = 1, t = ,5.0 cm and 3,: = 10. The intersecting straight

lines indicate the predicted values.

demonstrating that the criteria may still apply when a :# 0.

5 CONCLUSION

A uniaxial perfectly matched layer provides a powerful means for trun-

cating finite element meshes close to the modeled structure. By prop-

erly selecting the material properties and sampling rate, almost any

desired level of absorption can be attained, and typically very few sam-

ples (less than five) are needed to achieve a reflection coefficient of -40

dB over a wide range of incidence angles. In this paper we described a

detailed study of three types of layer material including homogeneous

and inhomogeneous uniaxial ones, and by identifying the scalable pa-

rameters of the layers, universal design curves and formulas were de-

veloped. The curves or formulas can be used to specify the numerical,

geometrical and electrical parameters of the PML to achieve a desired

absorption down to -60 dB or lower. They are valid for all real angles of

incidence for the anisotropic layer and restricted to normal incidence for

the isotropic layer. As expected, a lower material loss requires a thicker

absorber to produce the same reflection coefficient. On the other hand,

a higher attenuation rate requires more samples to attain a lower re-

flection coefficient in a numerical implementation. An inhomogeneous
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(tapered j P.ML i> t,mter thai_ a ho11_,fleneou. ,,_,,. >i_,_' _l_,' r_ax,'riai

loss can b¢' increased to larger values close 1o 1}_,' _xJ_'ta] I,ackille wlwre
the tietd is smallest.

To lest t]le applicability of the design criteria ill a tllree-dinm_lsional

setting, a shielded nficrostrip line and a rectangular waveguide were

considered. \Vith both structures terminaled with a homogeneous

PML. the results were in reasonable agreemeiit with prediction, and

the discrepancies were no more than could be expected in view of the

conditions under which the criteria were established. These conditions

are:

(i) use of a particular one-dimensional FEM code

(ii) based on the worst case polarization, i.e. the polarization for

which the minimum reflection coefficient is largest

(iii) assumption of a pure imaginary propagation constant, i.e. o = O,
in the laver.

Condition (iii) is a requirement for scalabilily, and though small

values of a are still admissible, the condition is clearly inappropriate

if there is substantial power at complex angles of incidence for which

large a is required for absorption. If the polarization can be specified,

(ii) is also inappropriate, and the design criteria may underestimate the

performance that can be achieved. In any given problem where there

is the luxury of testing a variety of layer specifications, it is probable

that a performance can be achieved which is bettei" than that predicted

by the criterion, but even then the design values are a logical place to

start. In the more likely situation where prior testing is not feasible,

we believe that the design criteria provide a logical basis for specifying

the parameters of the PML and its sampling.
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Application and Design Guidelines of the
PML Absorber for Finite Element

Simulations of Microwave Packages

J. Gong*. S. Legault*. Y. Botros* and .J.L. \'olakis*

Abstract

The recently introduced perfectly matched layer(PML) uniaxial absorber for fre-

quency domain finite element simulations has several advantages. In this paper we

present the application of PML for microwave circuit simulations along with design

guidelines to obtain a desired level of absorption. Different feeding techniques are also
investigated for improved accuracy.

I. Introduction

In the numerical simulation of 3D microwave circuits using partial differential approaches, it

is necessary to terminate the domain with some type of non-reflective boundary conditions.

When using frequency domain PDE formulations, such as the finite element method, the

standard approach is to employ some type of absorbing boundary conditions(ABCs) [1], [2],

[3]. Also, the use of infinite elements [4] or port conditions [5] have been investigated. All of

these mesh truncation methods require a priori knowledge of the dominant mode fields and,

to a great extent, their success depends on the purity of the assumed mode expansion at

the mesh truncation surface. Larger computational domains must therefore be used and the

accuracy of the technique in computing the scattering parameters could be compromised.

Recently, a new anisotropic (uniaxial) absorber [6] was introduced for truncating finite

element meshes. This absorber is reflectionless(i.e, perfectly matched at its interface) for all

incident waves, regardless of their incidence angle and propagation constants. As a result,

it can be placed very close to the circuit discontinuity and is particularly attractive for

terminating the computational domain of high density microwave circuits where complex
field distributions could be present.

Although the proposed uniaxial PML absorber has a perfectly matched interface, in

practice a finite metal-backed (say) layer must be used which is no longer reflectionless due

*Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michi-
gan, Ann Arbor, MI 48109-2122

91



lolltel>r{'_.etlceoftlwl_oct_.eeI:i_. 1_. II i_lheroforcofintcreq 1L,t>t_lin_i_,,.ttw,ti,>orpti',i_x_,f
lh_.laver t,v prol,,r _clPc'tionof l lw t}armnoler, Iu achiP\_,a ,_,]\,'1_ r_qic,xi\i_\ wi_}_ a n]il_il_m_l_

Iax{'r lllicktles_., lI_ lhi_. paper, w_, 1}r{,_{,i'_l_uid_']ilie_. ['t}r ii]l_,l_,lll{,i_titl,_, _}1,' }_\ll_ ai,.._,ri,{.t _,,

lv||ii('_.iI(, filliI{' e]('i11ellt II|es}le_ }|1 l]lic]ow_.t\'e (.ir([|i[ si|llIi]_-ttiuil>. Iz.x_tilll,i,' illi(t,}xv_.t\{, {ii-,tli_

calculalion.,, are. a]_.o _Jxt, rl to de_to_l_tr_tte lhe acc'tli'acx t,] tit(' I'.XI1. al,,..r),,'_, ll_,' ]']2.X]

simulator 8.11(] Ill{' ft.o{] n]{,(le]..Xlor{, eXalllt}]e_, will 1,0 ]}l{'s{'Ilt{'{] at t]l{' {'{']If{'l't'II{'tL

II. Absorber Design

An extensive study was carried out using two-dimensional{see Fig. 1) and three diniensi{ma]

models (see Fig. 2} in order Io optimize the absorber's l)erformance using the minimum

thickness and discretization rate. As expected, tire absorl}er's l llickness, material t)rol}eilies

and the discretization rate all play all equally important role on the performance of the P.XIL.

The typical field behavior interior to the absorber is shown fit Fig. 3. As seen. for small ;_'

values the field decay is not sufficient to eliminate refleclions from the metal backing. For

large [_ values, the rapid decay can no longer be accurately modeled by the FEM simulalion

and consequently the associated VSWR increases to unacceptable values. However. an op-

timum value of/3 which minimizes the reflection coefficient for a given laver thickness and

discretization can found. The parameters ,_3and t play complimentary roles and the study

shows that the PML absorber's performance can be characterized in terms of the product

a_ (a scalable quantity when a = 0) and the discretization rate. A two-dimensional analysis
Ae

_'t and N (the number of samples in thewas carried out to determine the optimum values of

PML layer) for maximum absorption near normal incidence. It was determined that given

a desired reflection coefficient IR] for the PML absorber, the optimum t2! and N values are
' '\ 9

approximately given by the expressions [7]

- O.OlO61RI+ 0.0433
A_

where [R[ must be given in dB and N is equal to or exceeding the right hand value. As an

example, if we desire to have a value of IRI equal to -50dB, from the above formulae we
#'t

have that _ _ 0.58 and N = 10. It should be noted that though the design formulae were

derived with a = 0 they also hold for small non-zero values of a.

III. Feed Excitation

Two feed models were used in conjunction with the scattering parameter extraction method.

One was the horizontal current probes (Fig. 2) linking the back PEC wall with the beginning

of a microstrip feed line. About 3 to 5 horizontal probes were needed for convergence and

this scheme proved more accurate that the usual single vertical probe.

The other feeding scheme employed here involved the specification of the quasi-static

TEM mode at the microstrip line port. In the context of the FEM, the excitation is intro-

duced by imposing boundary conditions across the entire cavity cross section through the
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input port. Th_'_c colidition_ _]_o s_,r'v_,to _u]fl>re._ backwaz(] rc]i_'<_iozl_ fr-_ml I iw nlt_dch'd

circuit di_(or,tinuitv. ('on_(.qu(,nIlv. th(,\ (az, t,(, pla('('d cl_,>,, t_, t}l,, <ti_c_,lllilkui_v wil}_,t_

comproz_ising lh(' accurac\ of 1}1(' SC_tItel'i_lg [)ararll('t(,r ('xl rac! iola.

IV. 3D Modeling Examples

The P.kIL performance as predicted by the formulae wa_ i]__'_tigat(,(] by u.q_ it _o trun(al_,

the domain of 3-D lnicrowave circuits. For examl)le. Fig. -1 shows the ot)tin_um value of

.\_ _ 0.9(; obtained from the above design equations corot)ares well wit ]1 the result._ of th(' full

wave FEM analysis of the microstrip line shown in Fig. "2. The 3-D VEM comt)ulations were

carried out using .V = 5 for modeling the PML absorber across its thickness and fronl lhc

given formulae, it follows that R = -41dB and this agrees wcll with the optimunl value shown

in Fig. 4. Another example is the meander line shown in Fig..5. For the FE,XI simulalion,

the structure was placed in a rectangular cavity of size .5.571_7_ >: tS.0mm x 3.175mm. The

cavity was tessellated using 29 × 150 x .5 edges and only 150 edges were used along the v-axis.

The domain was terminated with a 10 laver PML, each laver being of thickness t = 0.12ram.

The ,-q'_l results are shown in Fig 6 and are in good agreement with the measured data [$].
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Figure 2: Shielded microstrip line terminated by a perfectly matched uniaxial absorber layer.

94



5

c

50,-

Cj

I - - I_Ta=0

1

- -2

* 3

-- IC

+

Segmenls Number Along WavegulOe (allpr,a= 1 0,1=4 SGHz)

Figure 3: Illustration of the field decay pattern inside tile PML layer.

-I(

"___;

l=

-2¢

E

_2
,EC__

--4S

-- - I,,4.0GHz

-- - 114.5GHz

-- 1=50GHz

0.5 1 1.5 2 25 3 35

21_l In )4 (0.,,1.0)

Figure 4: Reflection coefficient vs 2_t/Ag with a=l, for the shielded microstrip line termi-

nated by the perfectly matched uniaxial layer.

95



1.525 mm

II

X
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Figure 6: Comparison of calculated and measured results for the meander line shown in
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Abstract

This chapter provides an overview of the finite element method (FEM) as apphed to

electromagnetic scattering and radiation problems. It begins with a review of the method-

ology with particular emphasis on new developments over the past five years relating to

feed modeling, parallelization and mesh truncation. New apphcations which illustrate the

method's capabilities, versatility and utility for general purpose applications are discussed.

Specifically, new finite element modeling of antennas on doubly curved platforms, bandpass

radomes and jet engine scattering are presented using a variety of mesh truncation schemes

(boundary integral, absorbing boundary conditions and perfectly matched absorbers) are

presented. Also, an entire section of the chapter is devoted to a reduced ordering method

based on the Pad_ expansion. This reduce ordering method is used to obtain broadband

responses from a few data points of the entire response. It is introduced in this chapter

for the first time in connection with hybrid finite element systems and promises substantial

computational savings.

1. Introduction

Over the past 10 years we have witnessed an increasing reliance on computational methods

for the characterization of electromagnetic problems. Although traditional integral equation

methods continue to be used for many applications, one can safely state that in recent years the

greatest progress in computational electromagnetics has been in the development and application

of partial differential equation(PDE) methods such as the finite difference-time domain and

finite element (FEM) methods, including hybridizations of these with integral equation and high

frequency techniques. The major reasons for the increasing reliance on PDE methods stem

from their inherent geometrical adaptability, low O(N) memory demand and their capability

to model heterogeneous (isotropic or anisotropic) geometries. These attributes are essential

in developing general-purpose analysis/design codes for electromagnetic scattering, antennas,
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.icrowavvcircuits and biomedicalapplications. Forexamt,l,',na,dernaircrafl __conlc__i_'...co,it;dt_
large nor>metallic or composite nmterial sectionsand anlenlta econlelrie.- nlav involx,' n_anv

layers of materials, including complex microwave circuit feeding net works..-\l_hough, the' _iamlcnt

method continues to remain the most acctlrate aim efticienl approac}_ for su], waxeh,llgl}l >izc

bodies of simple geometries. PDE methods and hybrid w'rsions of tl,csc haw show_ a muc}l

greater promise for large scale simulations without placing restrictions on the _,{...'(lllellV) . and

material composition of the structure.

This chapter is a selected review of hybrid finite element methods and their applications to

scattering and antenna analysis. \\'e begin by first introducing the mathematical basics of the

method without reference to a specific applications and in a manner thai identifies the method's

inherent advantages in handling arbitrary geometrical configurations which may incorporate

impedance boundary conditions and anisotropic materials. In this section we also identify the

key challenges associated with the implementation of the method such as mesh truncation and

feed modeling for antenna applications. Section 3 of the chapter reviews the various mesh

truncation schemes to be employed on the outer mesh surface for the unique solution of the

vector wave equation. Absorbing boundary conditions, integral equations and artificial absorbers

are discussed, all leading to different versions of hybrid FEM methodologies, and we comment on

their accuracy and ease of implementation. Section 4 presents several approaches for antenna feed

modeling in the context of the FEM, including coaxial as well as aperture coupled feeds. The nexl

section is devoted to parallelization issues specific to finite element codes. We give performances

of typical FEM codes and provide storage and implementation guidelines for maximizing code

performance on parallel computing platforms. Section 6 describes a reduced order modeling

approach for extrapolating broadband responses from a few data points. The method is based

on the Asymptotic Evaluation Method(AWE) and is developed here for hybrid finite element

systems. The final section of the paper gives some additional representative applications of the

finite element method to scattering and antenna problems.

2. Theory

2.1. FEM FORMULATION

Consider the antenna and scattering configurations shown in Figure 1. In the case of a scatterer,

the entire computational domain is enclosed by a fictitious surface So that may encompass a

variety of composite/dielectric volumes as well as metallic, impedance and resistive surfaces.

The antenna geometry is assumed to be recessed in some doubly curved surface. In this case,

the bounding surface So may either be located as shown or can be coincident with the antenna

aperture. As usual, the recessed cavity is intended to house the radiating elements and their

feeding structure such as coaxial cables, striplines, microstrip lines or aperture coupled feeds•

The cavity may encompass any inhomogeneous or anisotropic material including resistive cards,

lumped or distributed loads and so on.

The goal with any finite element formulation is to obtain the solution of the vector wave

equation

---- 1 } 2=• _ ]% Er • -- _ .V x #_ (V × E) E -jkoZoa, V × (_-' Mi) (1)
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(c)

Figure 1: Computational domains for FEM analysis, (a) the various regions enclosed by So, (b) typical

tetrahedral mesh, (c) computational regions for antenna analysis
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in which E represents lht' tola] electric field, i7-.77., d<'llol,' tt,' r,'lativ_, t,<'rIllilli\ilV a_ltl t.'rrl2,'-

ability I('nsors of Ill(' compulalional domaiL. /% is llw free ,q>ao, xvavt,nuil_t,cr and Z_, i- It.. tic,"

space intrinsic impedance. In addilion. J, and M, &'nol,' lh,' inlpr,'ssed cl_,clri, alal illaerlclic

sources, respectively, and represenl the excitation for the anlcnna t)robh,nl. ..\.- i> wclI kIiown.
the slandard finite elenmnt (FE) solution scheme is _o consi&'r the weak fornl of I1 ). inslvad of

solving it directly. This can be achieved by extrenfizing l}w pertinent functional [11

F(E)
= _

÷

+

E). (v, E)] - L. E)-E} d,.

/// E. [jh'oZoJ,+ V. (/_-_. M,)]&.

jkoZo [[ E • (H × it)ds
JJs o+S!

+ -a3koZo --ath x E). if, x E)ds + _'T

where R denotes the resistivity or impedance of the surface &, S: stands for the junction opening

to possible guided feeding structures and H is the corresponding magnetic field on So and S:

whose outer normal is given by ft. Also, I:] is the source volume and l'i is the volume occupied

by the load ZL, whose length and cross section are given by' d and s, respectively. It is noted

that S, must be closed when it satisfies an opaque impedance boundary condition but can be

open (i.e. a finite plate) if it satisfies the penetrable resistive sheet condition [2]

xhxE=-Rfix(H +-H-)

where H + denote the fields on the two sides of the surface S,. As seen from (2), in spite of the

discontinuity in the magnetic field, no special care is required for the evaluation of the integral

over S,. The explicit knowledge of H is, however, required over the surface So and S/ (referred

to as mesh truncation surfaces) for the unique solution of E.

As an alternative to (2), we can instead begin with (1) by weighting it with a testing function

T. Subsequently, application of the divergence theorem yields the residual

<R,T>

H

11 m. (H x fi)dS+ jkoZo
aJs o+S!

+ jkoZo -_(n x T). (fix E)dS + _ T. EdV (3)

This is typically referred to as the weak form of the wave equation, whereas (2) is referred to as

the variational form. It will be seen later that when set equal to zero,(3) yields the same system

of equations as those deduced from the functional (2). Therefore both methods are equivalent.
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]ho functional (2) or tile weighted residual I;{_ carl 1,e ca.-t inlo a discr,'lo svstcnl of oqua_ion..
for the solution of E. "Io accomplish thi-. it is tirs_ necessary _, su},divi¢h' tl_v xoluilw as a

collecliol, of small elements such as those >llown in Figure 2 [31. \\'ilhill ('a¢tl \olUIll_'vh'nmllt.

the field can then 1)<'expanded as

[ -IA
Right Angled

Brick

Skewed Brick Curvilinear Brick

Tetrahedron Distorted Prism Cylindrical Shell

Figure 2: Illustration of the various elements for tessellating three dimensional volumes

M=# of edges

Ee = Z E_,W_ = [We] T {E _} (4)
k=l

in which W[, are referred to as the edge-based shape or basis functions of the eth element in the

computational domain. In contrast to the traditional node-based shape functions, the edge-based

shape functions are better suited [5] for simulating three dimensional electromagnetic fields at

corners and edges. Moreover, edge-based shape functions overcome difficulties associated with

spurious resonances [6]. They were proposed by Whitney [7] over 35 years ago and were revived

in the 1980s [8],[9]. Their representation is different for each element but have the common

properties [10] of being divergence free (i.e., V • Wk = 0 within the element) and normalized in

such a manner so that the expansion coefficients E_, represent the average field value across the

kth edge of the eth element. One disadvantage of the edge-based elements is that the5' increase

the unknown count. However, this is balanced by the increased sparsity of the resulting stiffness

matrix. A detailed mathematical presentation of the edge-based shape functions for various two

and three dimensional elements (bricks, hexahedra and tetrahedra) [11]-[14] is given by Graglia
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et. al. 11.51 in this issue of the Transactions. Linear as wclI a_- hiehcr order tcurvilincarl ch'nwn1._

aw discussed [16i-[19 i.

2.2. DISCRETIZATION AND SYSTEM ASSEMBLY

Once the computational domain has been tessellated using al)l_ropriale elements a_l¢t silap,' fmlc-

tions, the discretization of (2) or (3) proceeds by introducing /he expansion E = ZE', with
¢=1

E _ as given by (4) and A'_ denoting the number of elements comprising the computational do-

main. For the functional (2), the system of equations is constructed by setting (Rayleigh-Ritz

procedure)

0F(E)
- 0, e = 1,2 ..... :\_: k= 1.2 .... ,M (5)

whereas in the case of (3) Galerkin's approach is used by selling T = W_.. Regardless of the

procedure, the resulting system will be of the form

Are N., Are N,

E[AOI{so}+ E[wl{e } + E{/, +Z{c'}
e=l s--I e=l s:l

=o (G)

in which the brackets denote square matrices and the curly braces refer to columns. Among

the various new parameters, [Aq is referred to as the element matrix and results from the

discretization of the first volume integral in (2) or (3); N, is equal to the aggregate of the

surface elements (quadrilaterals for hexahedra or triangles for tetrahedra and prisms) used for

the tessellation of So, Sf and S_; the column {K _} results from the discretization of the source

integral over V_; [B _] is the matrix associated with the surface integrals over ,90 + SI in (2) or

(3) with N, aggregated surface elements; and finally {C'} results from the discretization of the

corresponding surface integral in (2) or (3) involving the external incident field. Basically, {C *}

provides the excitations for scattering problems whereas {K _} is the corresponding excitation

column for internal sources as is the case with antenna problems.

The entries of the element matrix [A e] are specific to the choice of the shape functions and

are compactly given by

[A_] =//_v,, { [DWeI[_']-I[DWeIT -- k_°[Wel[_'l[WelT} dV
(7)

with

_'_ t" z.I[DW,IT = _ {w;}T_ o IwqT

k''_J

(8)

and V¢ denotes the volume of the discrete element while the subscripts (x, y, z) in (8) imply the

(x, y, z) components of the shape function W '. If lumped loads are present (i.e., in the presence

of a volume integral over Vt), the diagonal entries of [A _] are simply modified with the addition of
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the lerm 2I:,Z,.d2/Zz. Perfectly conducting pos't.,, located a_ th,' 1,'; cdce ar_, handh'd by se_ling

the corresl_onding total fields equal to zero and rearrangi_g l ll_, tiItal nlatrix as discussed later.

The internal source excitation column is sir_pl.v given by

( {,,-})},l,_ ._I,=
dU (_,_t

The specification of the matrix [B'] and the entries of the corresponding excilation colunm

{("} due to the incident field can not be completed withoul first introducing some a priori

relationship between the E and H fields on .5'o. This relationship (or boundary condition on

,5',) is referred to as the mesh termination condition and its form depends on the physics of

the problem. For example, in the case of problems where the entire computational domain is

enclosed by a perfect electric or magnetic conductor, the unknown column {f'} is eliminated

from {El. For scattering and radiation problems, the mesh termination condition should be

such that the artificial boundary So appears transparent to all waves incident from the interior

of the computational domain. Clearly, if So is placed far enough from the scatterer or radiator.

the simple Sommerfeld radiation condition provides the appropriate relationship between E and

H. However, this is not practical since it will yield large computational domains. To bring So as

close as possible to the scattering or radiating surface, more sophisticated boundary conditions

must be introduced on So. These mesh termination conditions are critical to the accuracy and

efficiency of the formulation and are some of the major bottlenecks in the implementation of the

FEM. Regardless of the employed mesh termination approach, after carrying out the sums in

(6), a process referred to as matrix assembly, the resulting matrix system will be of the general
form

"1,f{Ev} [0] {EV}:} }+I'°',0,.;. }_-{.:}}{b }
[,41

In this, {E V} denotes the field unknowns within the volume enclosed by So + S/ whereas {E s}

represents the corresponding unknowns on the boundaries So and/or S:. The excitation column

{b y} results from the assembly of {K _} and similarly {b B} is associated with {C'}. The matrix

[.,4] is very sparse (9 to 30 non-zero entries per row) and this is a major characteristic and

advantage of FEM. By using special storage schemes and solvers suitable for sparse systems,

the CPU and memory requirements are maintained at O(N) and scalability can be attained on

multiprocessor platforms.

The boundary matrix [G] in (10) is associated with the boundary fields {E B} and its specific

form is determined by the employed mesh termination condition on So. Over the past five years,

much research on FEM has concentrated on the development of mesh truncation schemes which

minimize the computational burden without compromising accuracy. As will be seen later, this

compromise is difficult to attain and is subject to the computational problem being considered.

For the purpose of our discussion, we will subdivide the various mesh termination schemes into

three categories: (1) exact boundary conditions, (2) absorbing boundary conditions (or ABCs),

and (3) artificial absorbers. Exact boundary conditions provide an integral relation between the

electric and magnetic fields, and because they are exact, they permit the placement of So very

near or exactly on the surface of the scatterer or radiator. The resulting formulation is referred
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Figure 3: Examples of matrix systems generated by the finite element-boundary integral (top figure)

and finite element-ABC methods (lower figure)
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1o as the finite elemem-boundarv integral tFI:7.-BI _ me_hod and coml,in(,s the adap_abililx of lh(,

FE._I and the rigor of the boundary integral methods, tIowoxer, it xield> a fully t)opulated matrix

[GI and as a result, the FE-BI method is associated with higher computational demands evell

though only a small part of the overall system is full (seo t:iguro 2al. -Io allc\'iale the higher

computational demands of the rigorous FE-BI method. AB('s or artificial absorbers (.-\:\s) can

instead be used to terminate the mesh. Both of these are approximate mesh termination methods.

but lead to completely sparse and scalable systems of equations. Basically. the sub-matrix [_G]

is eliminated with the application of ABCs or AAs (see Figure 3b). In the case of ABCs. a

local boundary condition in the form of a differential equation is applied on 3",-.to relate E and

H so that .5'° appears as transparent as possible to the incident fields from the interior. The

resulting method will be referred to as the finite element-ABC (FE-ABC) method and has so

far been the primary method for general-purpose scattering computations. Finally. the use of

artificial absorbers (including perfectly matched layers or PMLs) [20J have recently gained major

attention because of their potential for greater accuracy and inherent implementation simplicity.

In the context of the finite element-artificial absorber (FE-AA) method, the mesh is terminated

by using a material absorber (typically' non-realizable in practice) to absorb the outgoing waves

and suppress backward reflections. Below, we briefly, discuss the specifics for each of the three

mesh termination schemes.

3. Mesh Termination Schemes

3.1. FINITE ELEMENT-BOUNDARY INTEGRAL METHOD

The FE-BI method was introduced in the early seventies [21],[22] as a natural extension of

the FEM for modeling unbounded problems. However, because of its larger computational

requirements, the method did not enjoy a widespread application to electromagnetics until the

late eighties [23, 24]. In accordance with the FE-BI method, the relation between E and H on

,5'0 is provided by the Stratton-Chu integral equation

fix H(r) = fi X HinC(r)

+ x ffs {[,Vx H(r)l x V'ao(r,r') + jkoYo[ ' x E(r)]Co(,',,")
O

+ j_o°oV'.[fi'xE(r')]VGo(r,r')}dS ' (11)

where r and r' denote the observation and integration points, respectively, and Go(r,r') =

exp(-jkolr - r'l/(4rrIr- r'[) is the free-space Green's function. The above is the most general

form of the boundary integral and places no restrictions on the shape of So with the exception

that it must be closed as shown in Figure l(a). Provided So is placed just above the outer

boundary of the scatterer or radiator, any material composition which is interior to So can be

handled with ease using the FEM without relation to the boundary integral. This form of the

FE-BI was used by Yuan [25] and later by Ang61ini et. al. [26], Antilla and Alexopoulos [27],

and Soudais [28] to model three dimensional scatterers with anisotropic treatments. The method

has also been successfully used for biomedical simulations [29],[30].
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The discretization of (11 i follows by introducing tim eXlm1_si_,lJ ,over Ill,' slh surfac,, ch,llmnl ,

,;=:_ of ed¢,'s

E(r) = _ E_S 2.
k=l

R> = i.<'i: 4t;'} t

with a similar expansion for the H field (if necessary). The surface st_at)e fu1_ctions S"_r) can 1)c

set equal to W_(r) when the latter are evaluated on the surface of the voltm_e element, l"or the

tetrahedron. 5 × Sk are simply equal to the traditional basis functions given by l{ao _t. al. [al].
However, as pointed out in [32J,S * can be chosen independently of _r, provided care is exercised

when (11) is substituted/combined with (2) or (3). Regardless. when (11) is substituted into

(2) or (3) after discretization we will get the partly sparse, partly full system [3a3given in {10)

and illustrated in Figure 3(a). Finally. we point out that since .-qo is a closed surface, the final

system is not immune to false interior resonances due to the boundary integral. In this case. the

combined field formulation [34] or the simpler complexification scheme [35] may be employed.

When So coincides with an aperture in a ground plane (see Figure l(b)), the integral equation

(11) can be simplified substantially" [36]. Specifically the integral relation between E and H on

the aperture reduces to

5 ×H=5 ×Hg°+/f s fi ×G(r,r')[E(r)×i_]dS (13)
0

where G is the dyadic Green's function of the second kind. with fi × V × C, = 0 on So and for

planar platforms it reduces to ,

¢ = -a-g ° i + vv FI (14)

In this, :i is the unit dyad and the factor of 2 is due to image theory. Also, H g° is equal to the

sum of the incident and reflected fields (in the absence of the aperture) for scattering or zero for

antenna parameter computations. For non-planar So, H g° is equal to the field scattered by an

otherwise smooth surface again with the aperture removed. In this case, the Green's function

should also be modified accordingly with respect to the non-planar platform. One of the first

implementations of the FE-BI for radiation and scattering from rectangular apertures/antenna

recessed in a ground plane was given by Jin and Volakis [14],[33],[36] and was later extended to

antenna analysis on planar [37], [38], [39] and cylindrical [40] platforms.

The FE-BI method is particularly attractive in terms of CPU and memory requirements

when the [6] matrix is Toeplitz and can therefore be cast in circulant form [41],[42], [43], [44].

In this case, the entire system can be solved using an iterative solver [45] in conjunction with

the FFT to reduce the CPU requirements down to O(N,_log N,_) for the boundary integral

sub-matrix. The FFT is simply used to carry out the matrix-vector product [_] {E B} within

the iterative solver. For example, if the symmetric biconjugate gradient (BCG) method [45]

is employed to solve (10) and rectangular elements are used, the storage requirement is only

4N_e + 8N,_, where N_ and N,_ denote the number of edges within the computational volume

and on So, respectively. For triangular surface elements, the storage requirement is about 4.5

times larger due to the presence of the diagonal edges across the quadrilaterals. Whether the

full matrix [G] is Toeplitz or not depends on the shape of the surface So and on the uniformity of
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the mesh. I) can },(' shown that IGi will be Toepli*z for t)lan;_r and cvliIldrica] surf/,c(', i)rovi&'d

the surface grid is uniform. The Joel)litz form of [C I has been cxl)h)il('d wi_tJ e.r('a) succ,'s- alld

sx'stems with more thall 0.5 million utlkllOWil.,, spanning apcrltlre,,, of [7IA • 17),\ hit\(' l)¢'ett solved

accurale]von a desktop workstation. For ey:ample, we observed lhat i_ IS(}.(100 u11kljowns s\'.,Icnl

converged ir_ 57 ilerations and for another sxstern of 25.00(} unknown.- <onvergcilcc wa., acllic\ed

after (ifi iterations with an average CPI time of 2 sec/iteralion on an tlt_,t)0t)0/7."_tl rated at

24.7 MFlops. Because of these impressive performances, it is advantageous to transform {d I to

a Toeplitz matrix even when the surface grid is not uniform. To do so. a unifornl grid can be

superimposed onto the non-uniform mesh (see Figure 4) and the edge fields on the two grids can

be related via a connectivity matrix [a9}. In this manner, non-rectangular antenna elements and

apertures can be modeled with the full geometrical adaptability of the finite element method and

without compromise in accuracy. It is important to note thai similar transformation matrices

can be exploited for decomposing computational domains as done, for example, in [47].

Y

I

0
n

_: 0 I :' 3

Figure _: Overlay of a uniform grid on an unstructured mesh for implementation of the FFT to perform

the matrix-vector products.

When So is not planar, the boundary integral matrix will inevitably cause large CPU and

storage requirements for large N,_ to the point where FE-ABC or FE-AA methods become

more attractive at the expense of accuracy. Recently, though, techniques have been proposed

which show promise in reducing the computational requirements of the matrix-vector product

[G] {E B}. Among them, the fast multipole method [48], [49] can reduce the operation count in

carrying out the matrix-vector product from O (N]_) down to O (N_; s) and reductions down to

O (N_; aa) have also been proposed. The main idea of the FMM [49] is to subdivide the surface

S'o into groups, each containing approximately M,, _ _ unknowns. By rewriting the free

space Green's function as an expansion [50] or by introducing its far field approximation [51],

it can be shown that the interactions between the unknowns within the groups can be carried

out in O(N,_M,_) operations whereas the interactions between groups can be carried out in

0 (N_/M,_) operations. The sum of these two operation counts yields a total operation count
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of O(.\'2, _') for tilt' t,oundarv integral matrix when .lie, _ \ .\,--_-. and thi, tlm.-t ],c a(l(l,.¢t I_, Ill,.

O(.\',)operation court! associated with the sparse matrix '.Ai. lh'tails for lh_' inlt)lcnw_ktaliotl

of the FMNi are given in [48]. [.19i and when combined with _he FE._I. wo can rcfor t,, i_ a-

the FE-FMNI method [52]. A comparison (,f the FE-BI {wi_h LI." and conjugatc gradict_l I"t:l

solvers) and the FE-FAIM methods for the calculation of lhc scallering b.v a large groox,, i_l a

ground plane is tabulated in Table 1. The groove was 50A long and 0.351 deep (all melallic)

Groove Width "]'ot al Unknowns

25,\ 2631

35,\ 3681

50,\ 5256
i

BI Unknowns

375

525

750

CPI" T, mt ]or BIt31,n_tts.seconds.I

FE-BI(CG) FE-FMM FE-BI(('GFFT)

(8,48) (3.2¢;) (1.41)

i16.34) {5.55) (3,24)

(45A) (_4.31) {5.40)

Storage o/Bl (KB)

Groove Width FE-BI(CG) FE-FMM

25A 1072 277

35A 2102 458

50A 4291 784

RAIS error (dB)

Groove Width FE-FMM

25.\ 1.12

35A 1.2

50A 1.36

Table 1: CPU Times, storage requirement and error

and filled with a dielectric having cr = 4 and #, = 1. By using a sampling rate of about 15

edges per wavelength, the system unknowns were N_ = 5256 and N,e = 750. From the data

in Table 1, it is clear that the FE-FMM is more than 3 times faster and requires 3-5 times less

memory than the FE-BI when LU decomposition is used for solving the FE-BI system. Because

of the grouping/averaging of the surface elements, the FE-FMM exhibits certain errors which

are functions of many parameters [53] and these errors must be kept in mind as the system size

is increased. It is expected that the FMM will exhibit greater speed-ups as the system size is

increased. Nevertheless, the special implementation of the FE-BI using the FFT is still by far

the most accurate approach.

We close this section by noting that another approach for treating the boundary integral

matrix-vector products is via the adaptive integral method (AIM) [54]. This approach relies

on the introduction of multipole expansions (similar to Taylor series expansions) to replace the

sources on So by equivalent point sources placed on rectangular grids. In this manner the CPU

requirements can be reduced by making use of three dimensional FFT routines. It can again

be shown that AIM reduces the boundary matrix CPU requirements down to O (N_ s) or even

down to O (Nsle33).

3.2. FINITE ELEMENT-ABSORBING BOUNDARY CONDITION METHOD

The goal with any ABC is to eliminate backward reflections from So, and a variety of these

boundary conditions have been proposed over the years beginning with those of Bayliss and

Turkel [55], and Engquist and Majda [56]. More recently, other ABCs such as those by Webb

and Kanellopoulos [57], and Chatterjee and Volakis [4] (see also Senior and Volakis [2]) have

been proposed. All ABCs provide an approximate relation between the E and H fields on the

surface So which in most cases is derived by assuming a field expansion in inverse powers of r,

where r is the radial distance from the center of So. If the ABC annihilates the first (2m + 1)
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irlx'ers,- powers of r• iI is then referred l(, as all mlh order .-\t'l(' The secoild ordt,r .-\t'l(" deriv,,d

by ('hatt(,rj,_*(, and \'olaki_ [4] is given b\

v.,'hoy(,

O 1 ----

0 2 ----

r/ -

z__K =

D =

o_i_i, + o2i2i2

_(i,i, + i2i_)
q • _a 71 •

-: _.]/7[ 4K2 -- /'_9 -Jr- D(J]_'o - K1 ) -}- K1 @

,714  - + D(A-0- .2)+ -
1

D - 2am

/'_1 -- K2

2jko + 5tc_ %
Krrt

/"9

/'_" 771

In the above equation, the subscripts n and t denote surface normal and tangential components

of the field, {i, {2 are the principal surface directions and _:1, to2 are the corresponding curvatures,

tom = (tea + tc2)/2 is the mean curvature and tog = tcatc2 is the Gaussian curvature. For _ci = to2

(spherical termination boundary), (15) reduces to the ABC derived by Webb and Kanellopoulos

[57]. The latter authors have recently proposed a correction [58] for the implementation of these

ABCs which should be incorporated in existing codes.

Upon substituting (15) into the surface integrals in (2) or 3), separating the scattered field

from incident field, and making use of vector differential and integral identities [59], we have

jkoZo /jfs ES_at (H × h)d S // s_at 2 s_at 2• = [cq(Et_ )+(_:(Et, )]dS
o d dSo

/fS scat 2
+ ,7(v× E ).ds

o

- Jas//o (V" E_at)[v" ('_" E'Cat)tldS" (16)

Next, expansion (4) or (12) is introduced and (16) is differentiated as in (5) to obtain the finite

element equations (6) . Since the ABC is a local condition, the sparsity of the finite element

matrix is preserved and the resulting system is again given by (10) with [_7] removed. However,

in the case of arbitrarily curved boundaries, the matrix will not be symmetric except for planar

and spherical boundaries• The system will be also symmetric for cylindrical boundaries only if

linear edge-based expansion functions are used. These ABCs have been extensively validated

for a number of antenna and scattering configurations[59], [60]. Higher order ABCs have been

proposed for a more effective suppression of the outgoing waves. These are often difficult to

implement but as demonstrated by Senior et. al. [61], they provide greater accuracy and effort

being placed so much closer to the scatterer or radiator.
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Metal Patch er= !at = 1-j2.7

5_.

etal
wO;5) _ Probe feed 015_"/

Figure 5: Illustration of an antenna terminated by an isotropic absorbing material

3.3. FINITE ELEMENT-ISOTROPIC ABSORBER _IETH()D

In accordance with this method, the outgoing waves are suppressed by an absorbing dielectric

laver placed at some distance from the antenna as shown in Figure 5. Typically, the layer is

backed by metal and the finite element region extends all the way to the metal at which point

the mesh is terminated by setting the tangential component of the total electric field to zero.

This is equivalent to removing the integral over So in (2) or (3). Obviously, the accuracy of

the technique depends on how well the metal-backed absorber suppresses the incoming waves

without introducing backward reflections. The plane wave reflection coefficient of the absorber

shown in Figure 5 has been minimized over the entire visible angular range [46]. The fact

that the dielectric has the same relative permittivity and permeability ensures that there is no

reflection from the air-dielectric interface at normal incidence (perfect impedance match), but

the performance degrades away from normal with the reflection coefficient reaching unity at

grazing. This limitation led researchers to consider perfectly matched interfaces as discussed

next. Nevertheless, even though the isotropic absorbers are not perfect, they are still useful in

modeling antennas on doubly curved platforms. Figure 6(a) displays a sectoral microstrip patch

Metallic

Ground _ z

Plane

Patch

h =0.114era

0

3.0 3.3

A _ e = 35°

//',, '_', ..... $=25"

/:/\,,---..,,o

3.1 3.2

(GHz)

x#

(a) (b)

Figure 6: Sectoral microstrip patch on cone

printed on a conical surface and Figure 6(b) shows the antenna resonance behavior for different

cone angles. We clearly observe that the resonance frequency drops with the cone angle for the

I10
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same patct_ dimensions. It should tw also remarked ltla_ the, computed resonance fregm'nc\ i.-

within 3.2 percent of that predicted by the approxin]ate cavity lia,del, and thi: i_ rea_,ot_a}>l,'.

In generating the results given in F'igur,. 6. the computational (ton_ain was (tiscreliz_'d usinc

2.35_k prisms resulting in 3. 790 degrees of freedom. One frequency rtlll l_>ok 5._'> l_lillult'_, tJIl al_

tIP9000 (.Model 715/6-1) workstation rated at "2"2.MFlops.

3.4. FINITE ELEMENT-ANISOTROPIC ABSORBER .XIETHOD

This mesh termination method is similar to that described in the previous section except thal

the laver is comprised of an anisotropic lossv dielectric which has zero reflection coefficient at

the air-dielectric interface over all incident angles and can therefore be considered as a perfectly

matched laver (PML) [20]. The intrinsic parameters of the PML are

/2,. = ?:r =
Q

o -53 0 0
0 o - j,3 0

0 0
a-j_

where a = (Z/Zo) 2, Z is the intrinsic impedance of the medium being terminated by the absorber,

whereas a, _ and the thickness of the layer are parameters which can be optimized for maximum

absorption.

The advantage of the anisotropic (over the isotropic) artificial absorber in terminating finite

element meshes is illustrated in Figure 7 [62] where it is shown that the anisotropic absorber

retains its low reflectivity at oblique incidences except near grazing (¢ = 0°). The performance

shown in Figure 7 is based on a purely theoretical analysis but as shown in Figure 8, this

performance can be realized in numerical simulations with careful choices of ¢_t and the sampling

rate N within the absorber. It has been found [63] that the reflectivity curve shown in Figure 8 is

typical to most situations and the location of the minimum reflection coefficient can be predicted

a priori. An extensive numerical study based on a two dimensional planar absorber model

demonstrated that /3t/,_, (A_ = A0/cos _b) is a scalable parameter and that given the desired

reflection coefficient IRI, the formulas [62]

- 0.0106IRI + 0.0433 (17)
A_

N = 0.147exp [7.353_] (18)

can be used to choose _t/,k_ and the minimum number of discrete samples to achieve the desired

absorption. In these, IRI is specified in dB and ,ko denotes the free space wavelength. These

formulas are in agreement with the actual numerical results in Figure 8 but it has yet to be

determined how well they apply for curved perfectly matched layers which are placed conformal

to scattering and radiating surfaces. Improvements to their absorptivity though can be attained

by considering tapered layers and formulas similar to (17)-(18) are given by Legault [62] for one

such tapered anisotropic absorber.
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Figure 7: Reflectivity of a A/4 thick planar metal-backed perfectly matched absorber (fl = 1 - j2) as

a function of incidence angle. (a) Geometry, (b) plane wave reflection coefficient vs. angle
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Figure 8: Reflection coefficient of the PML for terminating a microstrip line as extracted from a

numerical implementation
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4. Feed Modeling

For scaltering problems where the plane wave incidence is usuall\ the "source'. tiw right }land

side excitation has been explicitly given i_ i l(I) and will no_ t,e discussed furlhcr, tlt_w_",m,

for antenna parameter computations, the explicil form of {h"} in i,qt will eh,l,e1_d o1_ the type

of feeding scheme being employed. Below we discuss specific forms of {h"} corr('spondillg lt_

different feeding choices.

4.1. SIMPLE PROBE FEED

For thin substrates the coaxial cable feed may be simplified as a thin currenl filament of length

/ carrying an electric current I/. Since this filament is located inside the cavity, the first term

of the integral in (2) or (3) needs to be considered for this model. Specifically. the ith (global)

entry of the excitation vector h', becomes

h'i = jkoZoI 1. W,(r), i = j,.j2 ..... j,, (19)

where r is the location of the filament, rn is the number of (non-metallic) element edges and j.,

is the global edge numbering index. In general, rn such entries are associated with m element

edges, and thus the index i goes from jl up to j_. This expression can be further reduced to

IQ = jkoZoI l, provided that the ith edge is coincident with the current filament.

4.2. VOLTAGE GAP FEED

This excitation is also referred to as a gap generator and amounts to specifying a priori the

electric voltage V across the opening of the coax cable or any other gap. Since V = E • d, where

d is a vector whose magnitude is the gap width, and E the electric field across the gap, we have
V

that Ei - , where cosOi is equal to 1 if the ith edge is parallel to d. Numerically, this gap
dcosOi

voltage model can be realized by first setting the diagonal term Aii of the [.,4] matrix equal to

unity and the off-diagonal terms A 0 (i 7_ j) to zero. For the right-hand-side vector, only the

entry corresponding to the ith (global) edge across the gap is specified and set equal to the value

Ei whereas all other entries associated with edges not in the gap are set to zero.

4.3. COAXIAL CABLE FEED MODEL

The simple probe feed of the coaxial cable isaccurate only ifthe substrate isvery thin. For

thicker substrates,an improved feed model isnecessary and thiscan be achieved by evaluating

the functional

Fc = -jkoZo If sl (E x H)- _. dS (20)

over the aperture S.f of the coax cable. Assuming a TEM mode across S], the fields within the

cable may be expressed as (see Figure 9) [64]
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( 0 . ]10 "

E = --r. H = --o. 1'211
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with

Io ('2"2//so - 'VfL/- _o + --.
Zo ;7

In these expressions, ere is the relative permittivity insido the cable. E azM H are l})_, eh'ctric

cavity patch

cavity-cable junction

- 2b
A

2a

(a) (b)

Figure 9: (a) Side view of a cavity-backed antenna with a coax cable feed; (b) Illustration of the FEM

mesh at the cavity-cable junction (the field is set to zero at the center conductor surface).

and magnetic fields, respectively, measured at z = 0 and I0 is the center conductor current. Also,

(r, ¢, z) are the polar coordinates of a point in the cable with the center at r = 0. We observe

that (22) is the desired constraint at the cable junction in terms of the new quantities ho and eo

which can be used as new unknowns in place of the fields E and H.

However, before introducing Fc into the system, it is necessary to relate e0 and ho to the

constant edge fields associated with the elements in the cavity region which border the cable

aperture. Since the actual field has a 1/r behavior in the cable, we find that

AV= E_(b-a)=eoln b, i= Np(p= 1,2, ..., No) (23)
a

where AV denotes the potential difference between the inner and outer surface of the cable and

Np denotes the global number for the edge across the coax cable. When this condition is used in

the functional Pc, it introduces the excitation into the finite element system without a need to
OFt

extend the mesh inside the cable or to employ a fictitious current probe. The derivation of
OE,

and its incorporation into the system is then a straightforward task [64]. As can be expected,

the above feed model assumes the presence of only the dominant(TEM) mode at the cavity-cable

junction, an assumption which may not be suitable for certain applications. Of course, the model

can be improved by extending the mesh (say, a distance d) into the cable. The equi-potential

condition will then be applied at z=-d, where all higher order modes vanish.
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4.4. OTHER FEED .XIODELS

There are a few other commonly used feed models for simulating attlennas and lhe associated

network in the conlexl of the finite element nmthods. In certain cases, tim st ruclt_ie.'- llla\ COlllail_.

detailed geometries which must be modeled with care to ensure the efficient\ and acc',uacv of

the simulation result``.`. For instance, the configurat ion of an aperlure coupled micros_ rip anlenna

may be efficiently modeled by applying t he equi-potential conl inuitv condit ion and t he inleresl.ed

readers are referred to [65] for details. Also in modeling microwave circuits as anlenna feed

network, the excitation location along the network may have to be placed far from the antenna

for probe models, and thus the modal excitation is an alternative to the probes described in

section 4.1 and 4._"2. This reduces the size of the computational domain without compromising

accuracy. The modal field distribution is typically obtained using a simplified analysis model to

truncate the 3D FE*I domain. A 2D FEM code can be used as well for geometries having the

same cross-section as the original feed network.

In general, the antenna feed or feed network can be accurately modeled in the context of the

FEM. Moreover, unlike the method of moments (MoM), the FEM provides the field distribution

in the entire 3D computational space and this is particularly useful for visualization around the

feed region and on the antenna.

5. Parallelization

When considering 3D problems of practical interest, the unknown count of the computational

domain can easily reach several million degrees of freedom. The sparsity of the FEM system

(particularly for the FE-ABC and FE-AA methods) makes possible the storage of such large scale

problems but even at O(N) computational demands, their practical solution requires efficient use

of parallel and vector platforms. Modern computing platforms can now deliver sustained speeds

of several GFlops and CPU speeds in the Tflops range are within our reach. The inherent

sparse matrices of PDE methods are particularly suited for execution on multiprocessor and

vector platforms but the exploitation of these processors requires special storage schemes and

techniques to perform the matrix-vector product required in the iterative algorithms at the Flop

rates sustained on these multiprocessors.

To parallelize and vectorize the FEM codes, it is essential to first optimize the execution of

the iterative solvers which typically take-up 90% of the CPU time. Among them, the conjugate

gradient algorithms (CG, BCG, CGS and QMR) have been found very attractive and a brief

comparison of the pros and cons for these is given in [45]. The Generalized Minimal Residual

Method (GMRES) is another iterative solver which can exhibit faster convergence rates. How-

ever, it stores the direction vectors and as a result it requires much higher storage. For the

discussion below we will primarily concentrate on the BCG and QMR algorithms and we note

that the symmetric form of BCG requires minimal number of arithmetic operations (see Table

2). A disadvantage of the BCG is its erratic convergence pattern whereas the QMR has smooth

and monotonic convergence. However, neither BCG nor QMR can guarantee convergence and

typically they both converge or not for the same problem. When considering the parallelization

of a completely sparse system such as that resulting from the FE-ABC method, the following

issues must be addressed:
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]1

('oItll,l,'x
r

Operat ion : ,. : -.- }

.Mat rix-vector l'roducts

\'ector l']_dates

Dot Products

Total # of Operations

nz,' I nz_'-.X

4 N i ::_N

N = # of unknowns

nze = # of nonzero matrix elements

Table 2: Floating Point Operations of B('G Per Iteration

5.1. STORAGE OF SPARSE SYSTEM

The performance of the code is strongly dependent on the employed storage scheme. Since a

typical FEM matrix has about 8.5 Nee or so non-zero entries, it is essential that the non-zero

elements be stored in a manner that keeps the storage requirements nearly equal to the non-zero

entries and minimizes inter-processor communications. The ITPACK [66] and the compressed

row storage (CRS) schemes are most appropriate for parallel computing. The ITPACK storage

format is most efficient for retrieving the matrix elements and certainly the choice method when

the number of non- zero elements are nearly equal for every matrix row. Basically, the ITPACK

format casts the FEM matrix in a smaller rectangular matrix having the same rows as the original

matrix and can be unpacked by referring to a pointer integer matrix of the same size. However,

this rectangular matrix can contain as much as 50% zeros which results in space wastage. By

using a modified ITPACK scheme, space wastage can be reduced down to 30%. Even with less

wastage, the CRS format may be the most efficient storage scheme with some compromise in

CPU speed. It amounts to storing [.,4] as a single long row which can be uncompressed using two

integer pointer arrays. For the symmetric BCG algorithm, the CRS format results in only 8.5

N complex numbers and N integers. However, it should be pointed out that the CRS format is

not appropriate for vector processors such as the C-90. For vectorization, it is best to organize

the storage in sections of long vectors and to achieve this for our type of matrices the jagged

diagonal format [67] appears to work best. Using this format the rows are reordered so that the

row with the maximum number of non- zeros is placed at the top of the matrix and rows with the

least non-zero entries are shuffled to the bottom. This reordering greatly enhances vectorization

because it allows tiling of the shorter rows to yield very long vector lengths in the matrix-vector

multiplication phase. Specifically, for some problem the jagged diagonal storage format allowed

the matrix-vector multiplication routine to run at about 275 MFlops on a Cray C-90 whereas the

same routine ran at 60 MFlops using the CRS format. The dot product speeds and the vector

updates reached 550 MFlops and 600 MFlops for the same problem. Table 3 provides a relative

comparison of CPU estimates on various computers.

5.2. INTERPROCESSOR COMMUNICATIONS

For distributed memory platforms, the method of partitioning the stiffness matrix [.,4] among

the processors, the chosen storage scheme and the inherent unstructured sparsity of [.A] are all
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t )FOCCSSOYS

(_'ray ('-90

of t'ro(essors. I) i liem ,y-so(>, iteration ullkIl,,)wll I i

!;O.55 j
I

1 (27.5 _IFlol,.,i

5_ O.57

8 :5.42

lntel Paragon 16 t .9,¢}
32 1.38

IBM SP-1 4 1.47

Table 3: CPU Time Per Unknown for Solving Typical FE-ABC Systems

crucial to the overall speed of the code. An approach that has worked well on massively parallel

processors (such as the SP-2. Intel Paragon, Convex Exemplar)is that of assigning each processor

a section of the matrix and by dividing the vectors among the P processors. Thus, each processor

is responsible for carrying out the matrix-vector product for the block of the matrix it owns.

However, the iterate vector is subdivided among all processors, and therefore narrow-band or

structured sparse matrices have an advantage because they reduce interprocessor communication.

Since typical FEM matrices are unstructured, algorithms such as the Recursive Spectral Bisection

(RSB) have been found very effective in reducing inter-processor communication. However, the

standard Gibbs-Pool-Stockmeyer profile reduction algorithm has been found even more effective

in reducing the initial FE-ABC matrix (see Figure 3) to banded form as illustrated in Figure 10.

This type of matrix reordering can deliver speed-ups as close to linear as possible.

x10"

0 0,5 1 1.5 Z Z.5 3
nz = 469151

x 104

Figure 10: Reduced bandwidth of the FE-ABC system after application of the Gibbs-Pool-Stockmeyer

profile reduction algorithm
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5.3. _NIATRIX PRECONDITIONING

Preconditioned iteralixe solvers are inlendc(] tt, improve the c-onxergex_c_, talc of tlw alaorilhnl.

AI times, preconditioners are necessary as nlav be the case wilh some dieh'ctricallv h,a(h'd sirra-

lures. However. for relatively small s\stems _less t}lat_ 100.(10(i unknown>! il _as I,e(q_ foum[ I[_a_

diagonal preconditioning is typically most effective and should always be at_t_lied. "1"hi- l_recondi-

tioning amounts to normalizing each row by the largest element, bul evell this simple operalion

can lead to substantial convergence speed-ups. Block and incomplele L1, precollditioners arc'

more effective in improving the convergence of the solver but are more cosily 1o implemen', and

one must judge on the overall CPU requirements rather than on the improved convergence alone.

For example, the incomplete L[" preconditioner given in [6S] reduced lhe ilerations to I/3 of those

needed with diagonal preconditioning. However. each iteration was 3 times more expensive due

to the triangular solver bottleneck.

6o Reduced Order Modeling (ROM) of Frequency

Responses

Reduced Order Modeling (ROM) methods such as the Asymptotic Waveform Evaluation (AWE)

have been successfully applied in VLSI and circuit analysis to approximate the transfer function

associated with a given set of ports/variables in circuit networks [69, 70, 71]. The basic idea

of the method is to develop an approximate transfer function of a given linear system from a

limited set of spectral solutions. Typically, a Padb expansion of the transfer function is postulated

whose coefficients are determined by matching the Pad_ representation to the available spectral

solutions of the complete system.

In the context of finite element systems, ROM can be employed to predict a frequency response

of the antenna input impedance or the scattering cross section of a given structure from a few

data points. That is, once a few frequency points have been obtained by solving the entire finite

element system of equations, these solutions along with the associated matrices can be re-used

to extrapolate a broadband response without a need to resolve the system at other frequency

points. In this section we present the theoretical basis of ROM and demonstrate its validity for

full wave Simulations using the finite element method as the computational engine.

In addition to using ROM for antenna impedance and radar cross section prediction as a

function of frequency, the method can also be used to fill-in angular pattern data points, thus

eliminating a need to recompute the entire solution at small angular intervals. Since typical

partial differential equation (PDE) systems involve thousands of unknowns, ROM can indeed

lead to dramatic reductions of CPU requirements in generating a response of antenna or scatterer

without a need to resolve the system for the fields in the entire computational grid. However, it

should benoted that the FEM matrix for the reference frequency points must be stored (in core

or out of core) with the current development of ROM for frequency domain analysis and thus

some trade-off between CPU and memory requirements is unavoidable. Nevertheless, in view of

the large CPU saving afforded by ROM, this appears to be a very small price to pay.
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6.1. THEORY OF REDUCED ORDER .XIODELING

6.1.1. t"EM .S'gst _m

When the functional (2) is discretized in (onneclion with al,sorl)ing I)oundarv conditioi> or

artificial absorbers for mesh truncation, the resulting systeln catl })c decolnposed into the form

A0 + kA, +/:2A2) {X} = {.f} (24)

where A, denote the usual square (sparse) matrices and k = 2rr/A = ..'/c is the wavenumber of

the medium. As usual. {f} is a column matrix describing the specific excitation.

Clearly (24) can be solved using direct or iterative methods for a given value of the wavenum-

ber as described earlier. Even though A, is sparse, the solution of the system (24) is computa-

tionally intensive and must be repeated for each k to obtain a frequency response. Also. certain

analyses and designs may require both temporal and frequency responses placing additional

computational burdens and a repeated solution of (24) is not an efficient approach in generating

these responses. An application of ROM to achieve an approximation to these responses is an

attractive alternative. For these problems, the excitation column {f} is a linear function of the

wavenumber and can therefore be stated as

{f} = k {f,} (25)

with {fl} being independent of frequency. This observation will be specifically used in our

subsequent presentation.

6.1.2. Reduced Order Modeling

To describe the basic idea of ROM in conjunction with the FEM, we begin by first expanding

the solution {X} in a Taylor series about ko, the wavenumber at which the system solution is

available. We have

{X}= {Xo} + (k-ko) {X,} + (k-ko? {X_} +...

+(k - k_) _ {Xt} + O { (k - k_) z+l } (26)

where {X=} is the solution of (24) corresponding to the wavenumber ko. By introducing this

expansion into (24) and equating equal powers of k in conjunction with (25), after some manip-

ulations, we find that

{Xa} = _°._o 1 {fl}

= A.o [{A}-A {Xo}-2koA2{Xo}]

} - -a o' [A, } + A ({Xo} + 2k0 })] (27)

{Xt} - -A_" [A, {Xt__} + A2({X,__} + 2k0 {X/_l})]

with

Ao = Ao + koA1 + k_A2 (28)
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Expressions(27) art- referred Io as lh(' sxslenl nlonlenl- whereas (2>) i> lh_' s\stcn_ al lh_'

prescribed wavenumber (L'=). Although an explicit inversioll of A_ I may },' m'c¢h,d a: illdicated in

(27). this inversion is used repeatedly and ca,,l thus t,e stored oul of-core follheimplen_entation

of I¢O.M. Also. given that for inpu! impedance computalions xw, arc tyt)ically inlcrestcd i_l the

field value at one location of the computational domain, only a single entry of {.\'_(t-)} need

be considered, say (the pth entry) .\'_(/,'). The above nlOIlletlts CAII I}ICII 1)_.' reduced Io scalar

form and the expansions (?.7) become a scalar representation of .\'['(/c) aboul the correspon(ting

solution at ]ca. To yield a more convergent expression, we can instead revert to a Padb expansion
which is a conventional rational function.

For transient analysis the Pad6 expansion can be cast 1)v partial fraction decomposition

[71, 74] into

q

"p . "P Yt

.\q (/c) = -\q0 + _/. _ 1.o _/.
I=1

(29)

where Xq0 is the limiting value as k tends to infinity. This is a qth order representation suitable

for time/frequency domain transformation. As can be realized, the residues and poles (ri and

k, + ki) in (29) correspond to those of the original physical system and play important roles

in the accuracy of the approximation. As can be expected a higher order expansion with more

zeros and poles can provide an improved approximation. The accuracy of ROM relies on the

prediction of the dominant residues and poles located closest to ko in a complex plane. Its key

advantage is that for many practical electromagnetic problems only a few poles and zeros are

needed for a sufficiently accurate representation.

For a hybrid finite element - boundary integral system, the implementation of ROM is more

involved because the fully populated boundary integral sub-matrix of the system has a more

complex dependence on frequency. In this case we may instead approximate the full sub-matrix

with a spectral expansion of the exponential boundary integral kernel to facilitate the extraction

of the system moments. This approach does increase the complexity in implementing ROM.

However, ROM still remains far more efficient in terms of CPU requirements when compared to

the conventional approach of repeating the system solution at each frequency.

As an application of ROM to a full wave electromagnetic simulation, we consider the evalu-

ation of the input impedance for a microstrip stub shielded in a metallic rectangular cavity as

shown in figure 11. The stub's input impedance is a strong function of frequency from 1-3.2 OI-Iz

and this example is therefore a good demonstration of ROM's capability. The shielded cavity is

2.38cm x 6.00cm x 1.06crn in size and the microstrip stub resides on a O.35crn thick substrate

having a dielectric constant of 3.2. The stub is 0.79cm wide and A/2 long at 1.785 GHz and we

note that the back wall of the cavity is terminated by a metal-backed artificial absorber having

relative constants of e, = (3.2,-3.2) and #, = (1.0,-1.0).

As a reference solution, the frequency response of the shielded stub was first computed from

1 to 3.2 GHz at 40 MHz intervals (50 points) using a full wave finite element solution. To

demonstrate the efficacy and accuracy of ROM we chose a single input impedance solution at

1.78 GHzin conjunction with the 8th order ROM in (29) to approximate the system response.

As seen in Figure 12, the 8th order ROM representation recovers the reference solution over the

entire frequency band for both the real and reactive parts of the impedance.

We conclude that the ROM technique is an extremely useful addition to electromagnetic
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simulation codesand packagesfor computing wideband frequency responses, large sins of radar

cross section(H('S) pattern signature, etc. using only a few sanli,l,,_, of lh,' svstenl solutio_l.

Figure 11: Illustration of 'the shielded micros'trip stub excited wi'th a current probe.
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Figure 12: Real and imaginary parts of input impedance computations based upon the 8th order ROM

implementations using a single point expansion at 1.78 GHz. Solid lines: exact reference data; Dashed

lines: 8th order ROM results.

7. Additional Applications

We choose two more examples to demonstrate the capability of the hybrid finite element methods.

Scattering by a Large Cone-Sphere: A cone-sphere is basically a hemisphere attached to

a cone. This is a difficult geometry to mesh since a surface singularity exists at the tip of the

cone. The singularity can be removed in two ways: i) by creating a small region near the tip

and detaching it from the surface or ii) by chopping off a small part near the tip of the cone.

The second option inevitably leads to small inaccuracies for backscatter from the conical tip;

however, we chose this option since the conical angle in our tested geometry was extremely small

(around 7° ) and the mesh generator failed to mesh the first case on numerous occasions. In

Figure 13, we plot the backscatter patterns of a 4.5k long cone-sphere having a radius of 0.5,_ for
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00 polarization. The me_-h truncalion surface i.- a rectazl_,:ulat I_ox placed 0.-IA frtml tll_' surface

of the cone-st)here...ks seen. the far-field results compare extr,,nwlv well with conll_Utalitm_, fro111

a body of revolutioil code {7.51.
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Figure 13: Backscatter pattern of a perfectly conducting conesphere for ¢¢ and 00 polarizations.

Black dots indicate computed values using the FE-ABC code (referred to as FEMATS) and the solid

line represents data from a body of revolution code [75]. Mesh termination surface is a rectangular box.

Frequency Selective Surfaces (FSS): FSS structures [76] are arrays of tightly packed periodic

elements which are typically sandwiched between dielectric layers. The periodic elements may

be of printed form or slot configurations designed to resonate at specific frequencies. As such,

they are penetrable around the element resonances and become completely reflecting at other

frequencies. To meet bandwidth design specifications, stacked element arrays may be used in

conjunction with dielectric layer loading. Here we consider the analysis of FSS structures via

the FE-BI method. Because of the fine geometrical detail associated with the FSS surface, the

finite element method has yet to be applied for the characterization of FSS structures, but use

of prismatic elements makes this a much easier task. Of particular interest in FSS design is the

determination of the transmission coefficient as a function of frequency, and since the array is

periodic, it suffices to consider a single cell of the FSS. For computing the transmission coefficient

T, the periodic cell is placed in a cavity as shown in Figure 14 and the structure is excited by a

plane wave impinging at normal incidence. Assuming that near resonance the wave transmitted
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Figure i4: Upper figure: geometry of the multilayer frequency selective surface (FSS) used for modeling;

lower figure: measured and calculated transmission coefficient through the FSS structure

through the FSS screen will retain its TEM character, the transmission coefficient of the FSS

panel can be approximated as

TJ°)= 10log -_

where a is the reflection coefficient of the absorber placed at the bottom of the cavity and should

be kept small (< 0.1) to suppress higher order interactions. By adding the next higher order

interaction, a more accurate expression for the transmission coefficient is

Td. _ T(g ) + lOlog [1 -a(1 - T(°))] .

The above FSS modeling approach was applied for a characterization of multi-layered slot

FSS structures. The geometry of the multilayer radome is given in Fig. 14. The total thickness

of the FSS was 6.3072cm and is comprised of two slot arrays (of the same geometry) sandwiched

within the dielectric layers. For modeling purpose, a 1.54cm thick absorber is placed below the

FSS as shown in Fig 14. It is seen that the results generated by the FE-BI method are in good

agreement with the measurements [77].

123



FEM FOI{ ANTENNAS ..\NI) .'4('.-VI-IEt{I_X(; 2",

8. Conclusion

\Ve reviewed hybrid finite element method_ as applied _o (qectromagnetic scat terin,2 axld radia-

tion problems..Much of the emphasis deall with the various mesh truncations schemes and wv

presented an up-to-dale account of these schemes. The usual finite element-l,oundarv inlegral

method was presented and new developments for reducing _he CPI requirenwnts of this lech-

nique using the fast integral methods were discussed. Anlenna feed modeling in ',he conlexl

of the finite element method had not been discussed before and for the firsl time we presented

an overview of the modeling approaches for the most popular antenna feeds, including aperture

coupled feeds. Parallelization will continue to play an increasingly greater role and a section

was included discussing our experiences for better implementation of finite element codes on

distributed and vector architectures. A number of examples illustrating the successful applica-

tion of the finite element method were included throughout the paper and these were intended

to demonstrate the method's geometrical adaptability" and inherent capability to treat highly

heterogeneous structures.

As can be expected, issues relating to mesh truncation, mixing of elements [78], domain

decomposition[79, 80], robustness, adaptive refinement[81], accuracy, error control, feed mod-

eling and parallelization for large scale simulations wilt continue to dominate future research

and developments relating to partial differential equation methods. Reduced order modeling

techniques such as the AWE method are also very promising for reducing the computational re-

quirements in generating broadband responses. Further development of AWE is certainly needed

for its application in connection with hybrid finite element systems.

An apparent advantage of the finite element method is its potential hybridization with all

other frequency domain methods. Future applications of the finite element method are likely

to make greater use of hybridization techniques aimed at increasing the method's accuracy and

efficiency while retaining its inherent geometrical adaptability and ease in handling materials.

Reduced order modeling techniques such as the AWE method is another promising approach
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